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ABSTRACT: Spatial reactors allow the study of the true asymptotic states of
dissipative structures in autocatalytic chemical systems in solution. They have permitted
the experimental discovery of genuine Turing patterns. However, when reactions at
work exhibit bistability between homogeneous steady states in a continuously stirred
tank reactor, Turing structures remain elusive. A reason may lie in the existence for
such reactions of the phenomenon of spatial bistability. A simple model for this effect is
discussed here. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem 98: 239–247, 2004
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Introduction

A s mentioned by D’Arcy Thompson [1], people
such as Leduc [2] already questioned, early in

the 1900s, the possibility of generating stationary
regular concentration patterns through the inter-
play of diffusion and chemistry when the study of
symmetry-breaking instabilities was still in its in-
fancy. It rests with Turing [3], 50 years ago, to have
been the first to formulate the necessary conditions
for the occurrence of a space symmetry breaking in
such a context. Following the emergence of the
Belousov–Zhabotinsky reaction [4, 5] in the mid
1960s, I. Prigogine and coworkers revived Turing’s
concept and put it on safe thermodynamic and

kinetic grounds [6–8]. This step opened up a whole
new field of physical chemistry. Innumerable theo-
retical works followed, and the diffusive instability
that generates such dissipative structures has
popped up in many other fields relating to physics
or chemistry. However, experiments in the chemi-
cal realm lagged behind, and it was only near the
end of 1989 that the first experimental evidence was
obtained by Castets et al. [9] using the Chlorite–
Iodide–Malonic acid (CIMA) system in so-called
“gel reactors.” A recent detailed status of Turing
patterns and other symmetry-breaking instabilities
in solution chemistry is presented in Ref. [10].

The Turing–Prigogine mechanism consists in the
spontaneous instability of a homogeneous mixture
of chemically reacting species, when some param-
eter threshold is crossed as one moves away from
equilibrium conditions. It leads to a stationary,
space–periodic pattern of the concentrations of re-
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actants (Fig. 1). To support such symmetry-break-
ing instability, the chemical kinetics must involve
some type of positive feedback loop controlled by
an activator species that reinforces its own changes,
the latter being counterbalanced by an inhibitory
process. Spatial structures can form when the in-
hibitory effects are transported by diffusion over a
space range larger than that of the activatory mech-
anism. Moving further from equilibrium, the pat-
tern may change its symmetry. In its minimal form,
the description of all the systems that exhibit such
diffusive instability can formally be cast in the com-
mon language of reaction–diffusion systems gov-
erned by the following set of equations:

�c�r, t�
�t � f�c, b� � D�2c�r, t�, (1)

where c(r, t) � (. . . , ci, . . . ) is the local concentra-
tion vector, f(c, b) is a vector function representing
the reaction kinetics, b stands for a set of control
parameters, and D is the matrix of constant diffu-
sive transport coefficients. Appropriate initial and
boundary conditions, in relation to the experimen-
tal setup (for the case discussed here, the chemical
reactor used), are added to complete the mathemat-
ical formulation.

Theoretical work relies heavily on the use of
nonlinear kinetic models for f(c, b) with a limited
number of chemical species, typically two or three.
The models stand as a compromise between a min-
imum of chemical realism and mathematical trac-
tability. For their part, the experimental kinetic
schemes usually involve a large amount of species,
often not yet unequivocally determined and there-
fore not amenable to a set of elementary reaction
steps [11].

The outcome of analytical work that relies
heavily on bifurcation theory [12, 13] allows one to
determine which structures of given symmetry are
stable for specific conditions (pattern selection). The
calculated bifurcation diagrams help to organize
the results obtained by straightforward numerical
integration of the reaction–diffusion equations.
Both data may finally be used to interpret the ex-
perimental results. The pattern selection problem
was already on Turing’s mind. Indeed, in the final
sections of his article [3] he stated: “Most of an
organism, most of the time, is developing from one
pattern into another, rather than from homogeneity
into a pattern. One would like to be able to follow
this more general process mathematically also.”

The experimental work takes place in so-called
“open spatial reactors” [10] that are specifically de-
signed to control the reaction and the structures
that eventually develop at a fixed distance from
equilibrium and allow one to probe the true asymp-
totic states of the reaction–diffusion systems. To
this effect, they are constructed to avoid all pertur-
bations induced by the hydrodynamic flows asso-
ciated with the constant supply of fresh reactants.
They must also enable the necessary diffusion dif-
ferential between activator and inhibitor species to
permit Turing instabilities to occur.

FIGURE 2. Schematic representation of open spatial
reactors: disc-shaped OSFR; CSTR, Membrane (min-
eral disc, pore size 0.02 �m), Gel, In and Out (input and
output ports of chemicals), L (light source), CCD cam-
era (black and white or color).

FIGURE 1. Turing structures of different symmetries
obtained with the CIMA reaction. Dark and light re-
gions, respectively, correspond to high and low iodide
concentration. All patterns are at the same scale: view
size, 1.7 mm � 1.7 mm. (Courtesy of P. De Kepper,
CRPP.)
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Since the initial discovery, the experimental setup
has undergone some modifications. Experiments are
now usually performed in one-side–fed reactors
(OSFR) sketched in Figure 2. The core of this kind of
reactor is made of a piece of soft hydrogel (polyacryl-
amide, agarose, polyvinylalcohol [PVA]) fed by dif-
fusion through one of its faces with chemicals con-
tained in a continuous stirred tank reactor (CSTR), the
contents of which are continuously renewed by
pumps. The gel is used to prevent any fluid motion,
so that the only processes at work within it are reac-
tions and diffusion. The other faces of the piece of gel
are pressed against impermeable transparent walls
(Plexiglas). Often, an inorganic membrane is placed
between the CSTR and the gel to maintain it rigidly.
Viewing can be practiced both along the feeding axis
or orthogonally to it. An advantage of such reactors is
that they allow for direct correlations to be made
between the dynamics of the CSTR, the bifurcation
behaviors of which have been extensively studied in
the past [11], and that of the gel. The dynamics of an
OSFR is given by the following set of equations, re-
spectively, for the CSTR and the gel

dco

dt � f�co� � k0�ci � co� � �V

D
L ��c

�x�
x�0

�c
�t � f�c� � D�2c, (2)

where ci, c0, and c are the concentrations of the
species, respectively, in the input flow of the CSTR,
in the CSTR, and inside the gel; D is the correspond-
ing diffusion coefficients matrix; k0, the inverse of
the residence time of the CSTR; L, the thickness of
the gel; �V, the ratio of the volume of the gel to that
of the CSTR; and x is the normal direction to the
CSTR–gel interface. The f’s are the reaction rates.
On the right side of the first of Eqs. (2), the second
term represents the input and output flows of the
species. It contains all the expandable control pa-
rameters of the system. The third term results from
the diffusive flux of the species at the interface
between the gel and the CSTR and represents the
feedback of the gel contents on the CSTR dynamics.
Because usually �V � 1, the last term can be ne-
glected so that the chemical state of the CSTR is
independent of the state of the gel and the concen-
trations in the CSTR act as a Dirichlet boundary
condition for the second Eq. (2) at x � 0 (@y, z) (in
contact to the CSTR). No-flux boundary conditions
are applied at x � L (@y, z) along the opposite wall
as well as on the other impermeable walls.

It is worthwhile to recall here a main character-
istic of the CSTR. If the input flow is large, that is, if
the residence time (k0

�1) is much shorter than the
typical reaction time, then the extent of the reaction
is small and, in a stationary regime, the concentra-
tions are close to the composition of the inflows
(flow state F). On the contrary, if the residence time
is much longer than the reaction time, then the
extent of the reaction is large and the composition
in the reactor is near that of the thermodynamic
equilibrium that one would obtain in a closed reac-
tor with the same initial composition (thermody-
namic state T). In standard reactions, the branches
of states F and T are smoothly connected at inter-
mediate flow rates. However, when autocatalytic or
similar nonlinear kinetic processes are present (as
in the reactions we are interested in) the two states
can coexist for a same set of flow rates (or feed
concentrations): their stability domains overlap
(hence, the bistability) over a range of control pa-
rameters, clearly defining two distinct branches F
and T, and the transition from one state to the other
occurs with hysteresis. The transition from the
monostable to the bistable situation usually pro-
ceeds through a critical point where the transition
from F to T, although smooth, is very sharp. Many
examples of this behavior can be found in reference
texts [11, 14]. Furthermore, reactions that are bi-
stable in a CSTR exhibit “clock dynamics” in batch
(closed reactor), that is, a sudden single switch to a
state close to equilibrium after a well-defined in-
duction period, characterized by a low conversion
rate. The switch occurs when the concentration of
some species involved in the positive feedback loop
process reaches a critical level. Thereafter, the con-
version rate considerably speeds up. In these reac-
tions, after the dynamical switch, at least one of the
major initial reactants is nearly totally consumed. It
is therefore clear that chemical bistability between
homogeneous steady states in a CSTR is the result
of the interplay between a clock reaction mecha-
nism and the mass fluxes of reactants and products
through the reactor and is not already included, as
in other fields, in the local kinetics function.

In the OSFR, because of such properties, it is
convenient to distinguish systems that are mono-
stable in a CSTR from those exhibiting bistability
between two homogeneous stationary states.

MONOSTABLE REACTIONS IN CSTR

This case, the simpler, occurs with the CIMA
reaction [15] that led to the discovery of the first
Turing structures [9]. In this and the related Chlo-
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rine Dioxide-Iodine-Malonic acid (CDIMA) reac-
tion, iodide (I�) and chlorite (ClO2

�), respectively,
play the role of the main activator and inhibitor
species [16, 17]. In the experiments illustrated in
Figure 1, the core of the reactor is made of agarose
gel loaded with PVA, a macromolecule that plays
two roles: (1) that of color indicator for the reaction.
It forms a reddish purple complex in the presence
of iodine and iodide species, and it is colorless in
the absence of iodide; (2) consequently, this macro-
molecule of reduced mobility, by forming a fast
reversible complex with these species, leads to an
effective reduced diffusivity of the activator [18], a
necessary condition for Turing pattern formation.

The piece of gel is usually very thin (typically a
few tenths of a millimeter). Consequently, it is often
considered that no significant concentration gradi-
ent would develop through the depth of the gel.
Because this corresponds to a thickness of the order
or less than the wavelength of the pattern, the re-
actors are often thought of as a good approximation
of extended two-dimensional systems, irrespective
of chemical feed concentrations. When the concen-
trations in the CSTR are in a steady state (because
these reactions can there also exhibit temporal os-
cillations), semiquantitative agreement [19] can be
obtained between experimental Turing patterns ob-
tained in the gel (pattern symmetry, loci of bifurca-
tions, e.g.) and the numerical integration of the
reaction–diffusion for the CDIMA reaction for
which a reasonable kinetic model exists [16, 17].

BISTABLE REACTIONS IN CSTR

A detailed analysis of pattern development in a
bistable system has been undertaken in the frame-
work of the Chlorine Dioxide–Iodide (CDI) reac-
tion. The reaction belongs to the family of the CIMA
and CDIMA reactions that lead to Turing patterns,
as seen above. It is a “minimal” nonlinear chemical
system [17, 20] for which a comprehensive kinetic
mechanism has been proposed [21] and that ac-
counts semiquantitatively for the batch and CSTR
dynamical behaviors of the reaction. The prototypic
bistable reaction system is less complex and has a
much better established kinetic mechanism than
that of the bistable Ferrocyanide-Iodate-Sulphite
(FIS) reaction that has led to the observation of
labyrinthine and other interacting front patterns
[22, 23] in an OSFR slightly more intricate than the
one described in Figure 2. A discussion of the origin
of these labyrinthine patterns and that of Turing
structures in systems with a bistable local kinetics
(i.e., not arising from a clock reaction mechanism

and therefore outside the realm of chemistry in
solution) is discussed in Ref. [10]. No sustained
patterns have yet been obtained with the CDI reac-
tion. However, the reaction allowed the discovery
of an important concept that will be discussed in
the next section.

Spatial Bistability

When the CSTR evolves in its bistable region, a
first important aspect is the determination of the
possible correlated states in the gel. Let us consider
the situation along the direction orthogonal to the
CSTR–gel boundary, that is, along the depth of the
gel [direction x in Eq. (2)], as the feed is homoge-
neous along the two other directions. If the CSTR is
on the F branch, fresh reactants are brought by
diffusion from the feeding edge (x � 0), where the
concentrations are kept fixed. Close to the edge, the
extent of the reaction is small and the chemical
composition remains close to that of the flow
branch. As we move away from the edge, the extent
of the reaction becomes larger, because the amount
of fresh reactants that reaches the corresponding
space point is limited by its transport through mo-
lecular diffusion. So, if the gel film is thick enough,
the regions of the gel far from the feeding edge may
eventually belong to a state lying on the T branch.
In such a case, the composition changes from
branch F to branch T, somewhere inside the gel in
the region where the time for transport of the reac-
tants overtakes the switching time of the clock re-
action for the local conditions. Thus, for the same F
state in the CSTR, one may observe two quite dif-
ferent composition profiles as a function of L, the
thickness of the gel. If L is very small, the chemical
composition in the gel stays near or in the direct
continuity of the F state of the CSTR. By extension,
we also call F this concentration profile in the gel. If
L is large enough, the part of the gel close to the
CSTR remains on branch F while the opposite part
has the T composition. We call FT this mixed profile
state of the gel. It can be shown experimentally and
numerically (using the kinetic scheme for the CDI
reaction) that there exist conditions for which the
stability of the F and FT states of the gel can overlap
for some finite range of L [24, 25]. Thus, two stable
concentration profiles that fit the same homoge-
neous conditions at the CSTR–gel boundary can be
observed in the gel. This is illustrated in Figure 3,
obtained in a thin annular strip of gel fed along one
edge (such geometry of the OSFR allows visualiza-
tion in the depth of the gel). This multiplicity phe-
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nomenon has been dubbed “spatial bistability.” It is
a characteristic property of clock reactions run in an
OSFR: again, it results from the interaction of this
particular kinetics with mass fluxes.

When the CSTR is on the T branch, the extent of
the reaction is such that only a single stable concen-
tration profile exists in the gel.

Although the concept of spatial bistability is well
established, its numerical proof [24] from the inte-
gration of the reaction–diffusion equations for the
eight-variables (if one includes the complexation
with the color indicator) kinetic model for the CDI
reaction offers little hope to apprehend the minimal
conditions for its occurrence: Is it merely related to
the specific boundary conditions, or do other dy-
namic effects play a role? Because we intend to use
the concept of spatial bistability in relation to other
problems, such as the transduction of chemical into
mechanical energy in a gel sensitive to the involved
chemistry, it seemed useful to try and find as min-
imal as possible a kinetic model, although still re-
alistic, that exhibits the phenomenon.

Spatial Bistability in the
Iodate–Arsenous Acid (IAA) Reaction

The iodate oxidation of arsenous acid in solution
is another clock reaction [11], and when the latter
compound is in excess, there exists a simple two-

variable kinetic scheme that allows a very precise
study of its dynamics in a CSTR where it may but
exhibit bistability between homogeneous states [26,
27]. No temporal oscillations ever come into the
picture. The phase–space structure for the CSTR is
thus of the simplest nature.

If u � [I�] and v � [IO3
�], the corresponding

reaction–diffusion system in the gel part of the
OSFR is

�u
�t � f�u, v� � Du�

2u

�v
�t � �f�u, v� � Dv�

2�, (3)

with f(u, v) � (ka � kbu)uv, where ka and kb are
kinetic constants for which realistic values are
given in the literature [11]. As discussed before, Eq.
(3) must be solved with:

▪ Dirichlet boundary conditions at the gel-
CSTR interface (x � 0)

u�0, y, z� � u0; v�0, y, z� � v0

▪ No flux boundary conditions at the imperme-
able walls in particular at x � L

��u
� x�

x�L

� � �v
� x�

x�L

� 0,

where u0 and v0 are the concentrations in the CSTR.
Because the feed is uniform at the boundary of

the gel, we may limit the discussion to one dimen-
sion along the x direction, as long as no transverse
symmetry breaking becomes involved. In the dis-
cussion that follows we separately consider two
cases.

EQUAL DIFFUSION COEFFICIENTS

Because all species involved in the IAA reaction
are small ions, their diffusion coefficients may be
taken as equal in absence of large-molecular-weight
complexing agents. Then, as iodide and iodate are
the only stoichiometric significant iodine-contain-
ing species, the following conservation law applies
when the OSFR is working in regime: u � v � u0 �
v0 � ui � vi � s. System (3) then reduces to a
single-variable model governed by (after dropping
all primes)

FIGURE 3. Spatial bistability for the CDI reaction in
an annular OSFR. (a) State F. (b) State FT. (c) Interface
between the F and FT states. Dark color correspond to
high iodide concentration. The arc lines are the limits of
the gel. The lower arc delineates the CSTR–gel inter-
face; the upper arc delineates the impermeable wall.
Distance between the two arc lines, L � 1 mm. (Cour-
tesy of P. De Kepper, CRPP.)
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�c
�t � c�1 � c��c � d� �

�2c
� x2 , (4)

where c � u/s, t	 � t/	, x � x	/
D	 with d � ka/kbs
and 	 � 1/kbs

2. We also have c(x � 0) � c0 and
(�c/�x)x�L � 0. Equation (4) has been used to de-
scribe a wave of conversion in a batch reactor with
very satisfactory results [28]. Because of the normal-
ization 0 � c � 1. The values c � 0 and c � 1,
respectively, pertain to no reaction at all or full
conversion (thermodynamic equilibrium) and are,
in an OSFR, unrealistic limiting cases correspond-
ing to no feeding of the CSTR or infinite residence
time of the CSTR. Because of the boundary condi-
tions, there are no homogeneous steady states in the
gel. An exact solution may be obtained for the
stationary states by direct integration of

d2c
dx2 � c�c � 1��c � d� � b.c. (5)

to obtain

�
c0

cL dc

�2�V�c� � V�cL�
� �L, (6)

where cL � c(x � L) and

V�c� �
c4

4 �
�d � 1�

3 c3 �
d
2 c2. (7)

Unfortunately, this formal solution, which can be
expressed in terms of elliptic functions, gives little
insight, and we must resort to numerical integra-
tion, even in this simple case.

As simple as the model may be, we have various
parameters at our disposal: the feeding concentra-
tions of the CSTR and the residence time determine
c0; although it also depends on the feeding concen-
trations, d is an independent parameter function of
the kinetic constants and the acidity of the solution.
The third parameter is the thickness L of the gel
slab. For sufficiently small d, numerical integration
shows that there exists a region of spatial bistability
bounded by the cusp in the (c0, L) plane (Figure 4).
For conditions inside the region, we may draw a
usual bistability diagram (back-to-back saddle-
node bifurcations) by representing the value of c(L)
as a function of L (Fig. 5). For a typical value the
two stable coexisting concentration profiles, the F
(almost flat) and FT states, are shown in Figure 6;
they correspond to the chemical behavior that was
discussed previously: when the gel becomes suffi-
ciently thick, the system may grow “old” near the
back impermeable barrier and transit to concentra-
tions corresponding in the CSTR to the thermody-
namic branch. Because this occurs for a one-vari-
able model, the origin of the phenomenon does not
lie with nonvariational effects as in other cases.

FIGURE 4. Spatial bistability between the F and FT
states occurs inside the cusped region in the (c0, L)
parameters plane (d � 0.0021). Outside the cusp, only
one of the profiles, either F (to the left) or FT (to the
right), occurs.

FIGURE 5. Bistability diagram exhibiting the two
back-to-back saddle-node bifurcations. The concentra-
tion c(x � L) at the impermeable boundary is repre-
sented as a function of L; c0 � 0.05, d � 0.0021.

BORCKMANS, BENYAICH, AND DEWEL

244 VOL. 98, NO. 2



However, the precise origin remains unclear. In-
deed, the roots of f(c) are 1, 0, and �d. We have
discussed above the meaning of the first two. The
last, corresponding to a negative concentration, is
unphysical. However, when d becomes too large,
spatial bistability is lost. In the allowed region, 0 �
c � 1, f(c) is a positive arc of a cubic. However,
simpler models possessing the same zeros, such as
the Fisher dynamics (also resulting in an elliptic
integral) or a piecewise linear “tent” (which allows
an analytic solution), do not give rise to spatial
bistability.

The important result, however, is that, as in the
CSTR, bistability is again generated through the
competition of a clock reaction mechanism and the
mass flux inside the gel. Because this flux varies
through the gel from 2
V(c0) � V(c) to zero, the
coexisting states that are in play cannot be homo-
geneous.

UNEQUAL DIFFUSION COEFFICIENTS

When the diffusion coefficients of the two con-
trolling antagonist species are different, one has to
revert to the two-variables model [Eq. (3)]. Numer-
ical results show that spatial bistability is still able
to occur. Let us define 
 � Dv/Du. The selective
control of this ratio can in some limits be achieved
by binding the activator u or the inhibitor v to
complexing agents, or eventually using other clock
reactions. Two cases are therefore possible. For 
 �

1 corresponding to long-range inhibition, either a
Turing instability could occur for some conditions
along the profiles or the profiles themselves could
undergo a transverse morphological instability [29–
33], leading to periodic patterns. The second insta-
bility could lie at the heart of the patterns observed
with the FIS reaction [10, 22]. Neither has turned up
in the search we have carried out so far with the
IAA model.

For the reverse situation, long-range activation (

� 1), we have recovered a result that was uncov-
ered experimentally [34] using another clock reac-
tion, namely, the tetrathionate-chlorite reaction.
When 
 becomes sufficiently small, in the region of
stationary spatial bistability, there appears a Hopf
bifurcation at 
H (Fig. 7) of the FT profiles, the
amplitude of which starts oscillating periodically in
time while it remains locked to v0 at x � 0. The
oscillation in time of the amplitude of the FT profile
at x � L is shown in Figure 8. The oscillation is
clearly the result of the differential diffusion, as the
reaction never shows time periodic behavior in a
CSTR.

When 
 is further decreased, the oscillations van-
ish, possibly through a saddle-loop bifurcation at

*H. To the left of this value on Figure 8, we have also

FIGURE 6. Coexisting concentration profiles c(x) in
the gel. The dotted and plain lines, respectively, corre-
spond to the F and FT states; c0 � 0.05, d � 0.0021,
L � 3.5.

FIGURE 7. Bifurcation diagram for u(L) as a function
of 
 the ratio of the diffusion coefficient of the inhibitor
versus that of the activator in a region where spatial
bistability occurs for 
 � 1. The FT state [larger values
of u(L)] undergoes a Hopf bifurcation at 
H ( � 0.225),
below which its amplitude oscillates everywhere in the
gel while being held at the fixed u0 value at the CSTR–
gel interface. The FT state is destroyed by another bi-
furcation at 
*H ( � 0.218), a still lower value of 
. To the
left of this point, the system exhibits excitability.
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found a region of excitability (not discussed here)
[34].

Conclusions

We have thus shown that spatial bistability can
occur in a very simple realistic system that can be
described semiquantitatively by one-variable dy-
namics. The origin of the phenomenon therefore
does not lie in effects such as a nonvariational char-
acter but is most probably related to the boundary
conditions related to the finite size of the system.
Because of its complication, the analytical solution
is of little value. Semianalytical methods (e.g.,
Galerkin expansion) are now being tested to reveal
further characteristics. We have also in the simple
case of the IAA reaction recovered the time periodic
oscillations generated by a diffusion differential.

Autocatalytic chemistry in solution is particular
as bistability between homogeneous steady states is
never built in the kinetics alone. This is contrast
with other fields, such as nonlinear optics, where
the Turing pattern selection may then be studied
along the usual lines if one takes into account the
neutral modes pertaining to the bifurcations of ho-
mogeneous states [31].

Perhaps the most important point that remains
to be explored in the chemical field is the impor-
tance of the existence of spatial bistability on spatial
symmetry breaking, whether they arise from a mor-

phological transverse instability of fronts connect-
ing the F and FT profiles (Fig. 3c) or from the
Turing–Prigogine mechanism [10]. Spatial bistabil-
ity also implies that the patterning problem be-
comes fully three-dimensional.
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