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A Model for Self-Oscillating Miniaturized Gels 
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Service de Chimie-Physique, CP231, Université Libre de Bruxelles, 
Bruxelles Β-1050, Belgium 

In many works on chemical patterns gels inactive regarding 
the chemistry involved have been used as reaction medium to 
suppress hydrodynamic convection while allowing the control 
of the system far from equilibrium. Instead, in this study, we 
consider the case of an active gel the behavior of which is 
influenced by some products of the reaction. We propose a 
simple model where the gel exhibits mechanical oscillations in 
response to a chemical reaction. 

Introduction 

Gels are cross-linked networks of polymers immersed in a fluid medium. It 
is now well known that they can exhibit large volume changes in response to 
many different stimuli: temperature, solvent composition, pH, electric fields. 
The universality of this volume phase transition of gels has now been clearly 
established. These stimuli-responsive gels have opened a new field of research 
by generating numerous experimental and theoretical works; they also pave the 
way for a variety of new technologies (/). 

Since they are open systems that can exchange chemical species with their 
surrounding solvent, gels can also play the role of chemical reactors. In this 
framework, the design of open spatial gel reactors has allowed well controlled 
experimental studies of chemical patterns such as chemical waves or Turing 
structures (2). They are made of a thin film of gel in contact with one or two 
continuous stirred tank reactors that sustain controlled nonequilibrium 
conditions. 
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In these experiments, the volume of the confined gel is constant; its main 
role is to damp hydrodynamical motions that would otherwise perturb the 
chemical intrinsic patterns. More recently it has been shown experimentally that 
the coupling of a volume phase transition with a chemical oscillator can generate 
a self-oscillating gel (3, 4). More precisely, if one of the chemical species taking 
part in the chemical reaction modifies the threshold for the phase transition, then 
the time periodic variation of this concentration can generate autonomous 
swelling-deswelling cycles of the gel even in absence of any external stimuli (5, 
6). This device thus provides a novel biomimetic material with potential 
biomedical and technical applications. 

The main purpose of this paper is to present a simple theoretical model to 
describe this interesting phenomenon which provides a further example of the 
synergy between an equilibrium phase transition and a pattern forming 
instability. It is based on a Landau type equation for the polymer volume fraction 
coupled to a simple two variables reactive system that, on its own, can undergo a 
Hopf bifurcation giving rise to chemical oscillations of the limit cycle type. 
These oscillating systems have now been extensively studied both from the 
theoretical and experimental points of view (7). 

For the sake of simplicity, we here study gels the dimensions of which are 
smaller than the characteristic wavelength of the chemo-elastic waves that can 
also appear in large systems. This enables us to consider homogeneous and 
uniform systems in agreement with the experiments performed recently on 
miniaturized oscillating gels. 

We have first verified that, in absence of chemical reactions, our dynamical 
equation for the gel reproduces the dramatic slowing downs in the transition 
rates which have been observed near the critical point or the spinodal limits of 
hydrogels. In the last section, we discuss an example of the instabilities that give 
rise to the self-oscillating behavior of the coupled gel-chemical system and we 
exhibit corresponding bifurcation diagrams. 

Volume phase transition of gels 

We first outline the thermodynamic theory of stimuli responsive gels (8). 
The free energy is given as a sum of contributions due to the mixing of the 
solvent and polymer matrix, its elasticity and the presence of counter ions 

AF = AF +AF, +AF (1) 
mix el urn x ' 

In terms of the polymer volume fraction φ, the Flory-Huggins theory (9) gives 

kT 
AFmix = — ν[0-Φ))Η\-Φ)+χΦ(\-Φ)] (2) 

where V and Vj are respectively the volume of the gel and the molar volume of 
the solvent. The polymer-solvent Flory interaction parameter χ is a function not 
only of the temperature but it may also depend on the concentrations of some 
soluted chemical species (10). On the basis of the simple rubber elasticity theory 
AFcj can be expressed as 
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where K0 and φ0 are the volume and polymer volume fraction in a reference state 
(Φ/Φο = ^o/y Φ/Φο = M)/^) a n d v0 the cross link number density. Β is a debated 
coefficient which we set to unity according to Flory's treatment. 
Finally, àFion includes the translational entropy of the counter ions of density ν,· 

Δ ^ , , = - * 7 ν , 1 η φ (4) 

The osmotic pressure 

Π = - Α (5) 

plays an important role in volume phase transitions. In the model, it is given by 
the following explicit expression 

Π ^ - ^ μ + Ι η Ο - ^ - , - ^ Ι ^ Τ ν , . φ ^ Γ ν ο ^ φ - φ 1 " ] (6) 

For small values of φ, the elastic contribution serves to limit the degree of 
swelling. The osmotic pressure must be zero for the gel at equilibrium with the 
surrounding solvent. As shown in Figure 1, by varying χ, the gel can undergo a 
phase transition from swollen to collapsed state (and vice-versa). In such process 
the system exhibits an asymmetric hysteresis loop. In the case of gels, due to the 
long range behavior of the elastic energy of deformation (proportional to the 
volume of the system) the mean-field Van der Waals type theory applies and the 
transition does not take place at the Maxwell point χ = %m where the free energy 
of the swollen branch becomes equal to that of the collapsed state. It rather 
occurs at (or near) the spinodal line (//, 12). This leads to observable hysteresis 
effects in the transition. Indeed experiments have reported differences of 
temperatures of up to 10 degrees between the temperature at which the collapse 
occurs and that where swelling takes place. Such hysteresis are also obtained 
when varying the pH (13, 14). Thermodynamic stability implies that the elastic 
bulk modulus Κ = φ(ΒΠβφ)τ > 0. The condition Κ = 0 determines the spinodal 

points χ$ζ and # s s shown in Figure 1. They respectively correspond to the 
marginal stability points of the collapsed and the swollen state. The locus of 
these points when the temperature or the solvent composition is varied 
determines the spinodal curve. The maximum of this curve corresponds to a 
critical point at which the volume phase transition becomes continuous. When 
the corresponding osmotic pressure is equal to zero, the system exhibits a critical 
endpoint at which the first three derivatives of the free energy with respect to V 
must vanish. Tanaka found such a critical endpoint in a polyacrylamide gel (15). 
He succeeded in reducing the volume discontinuity at zero osmotic pressure by 
varying the composition of the solvent. 
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0.6 

0.6 0.7 γ γ 0.8 ν 0.9 
*sc ν m Λ - S S 

Figure Ι. Equilibrium volume phase transition diagram for the gel. The polymer 
volume fraction φ is represented as a function of Flory's interaction parameter^ 

These conditions allow to determine the critical values of 0C, Yc and Xc(Tc). As 
they are not required in the following we will not give here their values in terms 
of the parameters defining the free energy. Keeping y= yc, near the critical point 

Π assumes the following standard form Π = Û 0 ( χ ( . - χ) + bo{0 - φ(,)', where a0 

and bo are constants independent of φ and£. One can then define a critical index 

δ such that {φ-φ^ <>= \χ - χ(.\ with δ = 1/3. Note that here, X~XC, plays a 
role analogue to that of the magnetic field in spin systems. The bulk modulus 

tends to zero as χ -» χα according to K oc (φ - œ \χ - j . Similarly 
near the spinodal points χ%ζ and #Ss, the osmotic pressure takes the characteristic 
expression of a saddle-node bifurcation Π = ακίΑχ + ύΧΙ{φ-0V/) where 

άχ = \χ~ χχ.\ with i Ξ c or s and the bulk modulus now becomes Κ = \άχ\υ2. 
In general the polymer-solvent interaction depends upon the polymer volume 
fraction. This is taken into account by a power series expansion 

Χ = X\ +ΧιΦ + Χ·>>Φ"+•·· (16). It has therefore been shown that a strong 
dependence on φ (sufficiently large value of χ2) can induce a discontinuous 
transition even in the case of nonionic gels (17). 

Relaxation kinetics 

The polymer volume fraction φ plays the role of a nonconserved order 
parameter. In (small) homogeneous and isotropic gels, its time evolution is 
assumed to satisfy the following Landau type equation 
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άφ ÔAF νηφη 

dt δφ φ2 

where the kinetic coefficient Γ fixes the time scale. In this description, it is the 
osmotic pressure that provides the thermodynamic force for the volume phase 
transition. Obviously, the stationary solutions of Eq. (7) correspond to the 
thermodynamic states Π(0ν) = 0. Within the above model 

TSF=ψ\{Χ ~γ)φ+,n(1
 φ ) + χ φ 2 + β φ 1 Ί (8) 

where a = kTTV^Q/v{, j8 = v 0 v , / ^ / 3 and y = (^^ # .)v l/fe. 
For numerical computations we use typical values found in the literature for gels 
considered in the study of volume phase transitions. 

The theory based on Eq. (8) differs from the standard kinetic description of 
gels volume phase transition which is based on a diffusion-type equation for the 
displacement vector u(rft) of a gel element (18). There that linear equation is 
derived from the theory of elasticity of the gel. It can only describe the 
relaxation of small amplitude long wavelength inhomogeneities around a 
homogeneous state (swollen or shrunken) but it cannot account for the large 
volume changes that take place in some hydrogeis. It does not contain an 
intrinsic driving force for the volume changes but this must be introduced 
through the initial condition which is thus different in the cases of swelling and 
shrinking. They are therefore appropriate to describe the response of the gel to a 
stimulus such as a change in solvent composition or temperature but they cannot 
describe swelling-deswelling cycles that have been observed in self-oseiHating 
systems. Finally, as pointed out by Onuki (19), that diffusion equation overlooks 
the slow mode representing homogeneous swelling or shrinking with minor 
density inhomogeneities. It has also been criticized on other grounds (12, 20). 

Relaxation methods provide a useful tool to probe the dynamical properties 
of physico-chemical systems. In this framework, the knowledge concerning how 
fast a gel shrinks or swells is essential for many technological applications. The 
relaxation time τ of small perturbations about a steady state φ% is obtained by 
linearizing Eq. (8) to give 

τ = 
du Φ 

Ψ* (9) Γφ0Υ0Κ 

The present dynamical description is thus compatible with the thermodynamic 
stability condition K>0. 

From Eq. (9) we see that relaxation processes present a dramatic slowing 
down in the vicinity of instabilities such as critical or cloud points where K-)0. 
The relaxation time indeed becomes infinitely large when the critical endpoint is 
approached both from above and from below. From Eq. (9) one can define a 
dynamical critical index T o c | ^ - ^ c | " M <

w i t h nc= 2/3. Similarly, the transition 
rate (i.e. the inverse of the relaxation time) decreases when the final state to 
which the system is pumped comes close to the hysteresis limits (χ^ $si with i = 
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c or s). This behavior τ « | ^ - ^ ν / | W f can now be characterized by a spinodal 

index n s= 1/2, according to Eq. (9). These phenomena of critical and spinodal 
slowing down have been experimentally observed on sub millimeter spherical 
NIPA gels (21, 22). 

Finally, gels can also exhibit a slow relaxation when they are driven slightly 
outside the bistability region. More precisely, if the system is initially prepared 
in a state such that φ0 > 0SI and χ < xsc, it undergoes a slowing down during its 
relaxation towards the swollen state when it is brought closer to the hysteresis 
limit (#sc, $sc). On this plateau (Figure 2), the system presents a slow power law 
decrease proportional to (χΧ(: -χ)τρ1. The slope and the lifetime of this plateau 
are very sensitive to the proximity of the hysteresis limit %m. The lifetime is 
given by τρ1 oc κ^χ-χ^.)~l/2 where κ* is a measure of the curvature of the 
hysteresis loop at the limit point. This dynamical behavior has also been 
experimentally observed during the swelling process of NIPA gels (22). After a 

0.3 , · . « 1 · 1 

0.25 V 

0.2 -

0.15 -

0.1 -

0.05 -

0 I , . . 1 . 1 . 1 
0 40 80 120 160 

t i m e 

Figure 2. Relaxation curves slightly beyond the hysteresis limit X5Cfor the same 
initial condition but for decreasing distance from the spinodal point. a=l, 
β^0.003, γ=0.038, χ^0.7233. (1)χ= 0.723 (2)χ~0.7232 (3)χ=0.72322. 

temperature jump, the gel starts at first to swell slowly until the process speeds 
up in the final stages. Both the inverse of the slope of the plateau and its lifetime 
are shown to diverge at the threshold. This mechanism can in principle show up 
both in the swelling and the shrinking processes. However as shown in Figure 1, 
the hysteresis loop in the gel systems is highly asymmetric. The curvature at the 
marginal stability limit of the collapsed state is smaller than at the other limit 
point. As a result at the same distance from the limit points the plateau lifetime 
is much larger and can thus more readily be observed in the swelling process. 
This phenomenon of spinodal slowing down presents generic features that only 
depend on the nature (saddle-node) bifurcation that delimit the domain of 
bistability and has for instance also been observed in chemical systems (23). It 
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would thus be interesting to experimentally test the various scalings derived in 
this section. 

Self-oscillating gels 

We now discuss the coupling between the swelling-deswelling dynamics as 
described above and a potentially oscillating chemical reaction. As chemical 
process we could have chosen realistic oscillating reactions that abound in the 
specialized literature such as, for instance, the Belousov-Zhabotinsky reaction or 
the bromate/sulfite/ferrocyanide pH oscillator (7). Kinetic schemes thereof may 
in some instances lead to semi-quantitative descriptions of the oscillations 
without resorting to the introduction of the ionic character of these reactions that 
occur in solutions. Nevertheless in this first approach and because the couplings 
with the gel have not yet been characterized we have chosen the formal 
Brusselator model that is known to exhibit autonomous oscillations that are well 
documented (24). For the ease of presentation, we therefore consider a neutral 
gel for which the discontinuous volume phase transition is induced by the 
dependence of the Flory interaction parameter on polymer volume fraction. We 
also suppose that some species involved in the reaction can influence the volume 
phase transition through the dependence of the expansion coefficients 
X\*Xi->Xy~ o n t n e * r concentrations. There lies the main coupling between the 
two subsystems. The governing kinetic equations then take the following form 

άφ _ r5AF(XJ4) 

dt δφ 

^ = f(XJ)-llï- (10) 
dt V dt 

dY Y dV — = g(XJ)-z— 

dt V dt 

The model we explicitly consider is thus 

^=^1(\-γ)φ + \ η ( \ - φ ) + (χ? + γιΥ + χ 2 ( 2 φ - ή ) φ 2 + β φ { η ] 

^ - = A-(B+l)X + X2Y + l ^ L (11) 
dt φ dt 

dt φ dt 

where the parameters α, β and γ have been defined earlier; y, describes the 
influence on the gel of Y, the sole species of the chemical reaction which 
changes the solvent properties through χ ϊ = X\ +Y\Y\ Λ and Β are chemical 
control parameters. In absence of phase transition chemical oscillations occur 
through a Hopf bifurcation at 1 +A2. The last terms in the chemical kinetic 
equations are the concentration-dilution contributions taking into account the 
volume variations of the "gel reactor". The existence of these contributions 
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imply that the role of chemistry is not, in general, merely that of a parametric 
forcing of the gel dynamics. We have a new dynamical system at hand. 

Parameter space is thus multidimensional so that we only discuss some 
illustrative cases. For a first set of values of the parameters Figure 3 describes 
the 

Β 
Figure 3. Bifurcation lines in the (χ2,Β) plane ofparameter space for a-0.2, 
β=0.00758, γ=0.002!3, χ°^0.3, γ2=0,32, Α=2. Plain lines are the locus of 

saddle-node bifurcations whereas the dotted lines are loci of Hopf bifurcations. 

bifurcations in the (χ2,Β) plane. Let us recall that χ2 controls the size of the 
discontinuity of the volume phase transition in the absence of a chemical process 
while Β is the standard bifurcation parameter of the Brusselator. 
When χ2 is sufficiently large, the swollen and collapsed states coexist for a 
range of values of Β inside the cusped region. As a result of the coupling, each 
state can undergo a Hopf bifurcation leading to mechano-chemical oscillations. 
The loci of the bifurcations leading to these oscillations are represented by the 
foliated curve H2H3 and the line Hi that remains near the value of B^ for the 
chosen values of the parameters. For these values, when χ2 = 1.02, the states of 
the polymer volume fraction are shown in Figure 4. For small values of Β the 
swollen state (small value of <j)s) is stable and may eventually coexist with the 
shrunken state. However at H2 the system undergoes a supercritical Hopf 
bifurcation to temporal oscillations. Meanwhile the collapsed state also 
undergoes a supercritical bifurcation at Hj. The oscillations of the swollen state 
do not however persist as their stable limit cycle annihilates with an unstable 
limit cycle emanating from H3. For larger values of Β only the oscillations of the 
shrunken state persist. The oscillations are of small amplitude as shown on 
Figure 5. There for small times we show the oscillations of the polymer volume 
fraction in the swollen state for £=6.5. After 20 units of time Β is stepped up to 8 
(beyond the collision of the stable and unstable limit cycles). The polymer 
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1 

0.8 

0.6 

0.4 

0.2 

0 
0 3 6 9 

Β 
Figure 4. Polymer volume fraction φ3 as a function of B. Solid and dotted lines 
respectively represent stable and unstable steady states. The parameters are as 

in Figure 3 andX2~l-02. 

time 

Figure 5. Mechano-chemical oscillations and birhythmicity. Parameters as in 
Figure 3. 

therefore shrinks as its volume fraction transits to oscillations around the upper 
branch. When the system has settled in this new state, at t = 80, Β is then stepped 
down to 6.5 again. The polymer volume fraction keeps on oscillating around its 
shrunken state albeit with a smaller amplitude as one comes nearer the H | Hopf 
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bifurcation. This also shows that the system exhibits birhythmicity as, for 
instance at Β = 6.5, oscillations around the swollen and collapsed state coexist. 

Although it is difficult to be quantitative at this stage the smallness of the 
oscillations can be tracked to the relation between the characteristic time of the 
gel, related to a and that of the chemistry. A measure of the last one is the 
inverse of the critical frequency of the limit cycle that is equal to A for the 
Brusselator. If this is so one may intuitively argue that when a is too small or 
MA too large, chemistry "recalls" the gel before it has swollen or shrunken as 
much as it could. To test this we have measured the amplitude of the oscillations 
for the same conditions as before changing only the value of a. The result is 
shown on Figure 6. Indeed the amplitude of the oscillations increase. 

0.7 y 

0.6 Y 

0.5 « · . « i « 
0 25 50 75 100 125 

time 

Figure 6. influence of a on the amplitude of the oscillations of φ for Β=8. 
Parameters as in Figure 3. 

To show the reverse effect of varying A we have chosen somewhat different 
conditions where the critical point is embedded in the folium and the oscillations 
of the swollen state are more of a relaxation type. This is shown in Figure 7. The 
amplitudes of the oscillations increase as A decreases. It therefore seems that the 
product of the gel relaxation time τ by the characteristic frequency ω of the 
chemical oscillations, Ρ = ωτ, provides the crucial parameter that determines the 
amplitude of these oscillations. 

As illustrated in Figures 5 and 7 the amplitude and frequencies of the gel 
oscillations depend on the values of the chemical parameters. Figure 8 also 
shows that there is no phase shift in the oscillations of the chemical 
concentration and the polymer volume fraction. These effects has been observed 
in the recent experiments (4, 6, 25). 

The fact that we are dealing with a new dynamical system is asserted by the 
fact that it may oscillate for reactant concentrations that are such that the 
chemical system on its own does not exhibit oscillations as it lies below its Hopf 
bifurcation limit. 
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A=0.1 

0.8 

0.6 

0.4 

0.2 

A=0.2 

L U 

A=0.15 

200 400 
time 

600 

Figure 7. Influence of A on the amplitude of the oscillations of φ for B=0.026. 
a=0.7, β=0.00758, γ=0.00213, χ°,=0.5, γ2=0.2. 

its shrunken state(dotted line) and the concentration of chemical species Y (plain 
line that represents Y/l 0). 
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Conclusions 

We have presented a very simple model that hints at how an oscillating 
chemical reaction can be used to drive the periodic oscillation of a piece of gel 
and thereby transduce chemical energy into mechanical work. 

Our toy model however does not take into account the all important spatial 
effects originating from the diffusive properties of the matrix of the gel (and 
related to the elastic properties) and those of the reactive solute species. These 
will introduce further characteristic time scales and new length scales in the 
problem. The inclusion of such terms should allow for the description of the 
chemical waves observed by Yoshida et al (25). 

In the absence of chemistry various approaches have been proposed to take 
such spatial effects into account (12, 18, 26, 27, 28, 29, 30, 31), but their relation 
to one another has not been tested thoroughly nor to what extend they include 
the spatial phenomena related to the volume phase transition as studied 
separately (19, 32). Along those lines a model for a sphere of gel presenting 
small temporal oscillations provoked by a stationary chemical reaction is 
presented in this volume with related experimental results (33). 

The determination of the precise nature of the couplings between the 
reacting chemicals and the gel matrix, as well as their intensities should present 
interesting experimental and theoretical challenges. 
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