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Abstract

Hydrodynamical density 5ngering of chemical fronts separating two miscible, stable steady states of di6erent chemical composition,
and hence density, can lead to complex spatio-temporal dynamics. The most striking feature of such dynamics is the disconnection of
droplets of one stable steady state from 5ngers invading the other stable steady state. Such disconnected droplets do not exist in pure
density 5ngering and are thus the result of the bistable kinetics. We study such dynamics by direct numerical simulations of Darcy’s law
for :ow in Hele–Shaw cells coupled to the kinetic equation for the concentration of a chemically reacting solute controlling the density
of the miscible solutions. The concentration of this solute obeys a simple cubic model leading to bistability. Experimental realization of
such dynamics in spatially extended Hele–Shaw cells calls for the use of the concept of spatial bistability which implies construction of
new continuously fed open reactors.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Chemical reactions can interact with hydrodynamical 5n-
gering instabilities and thereby a6ect the stability proper-
ties as well as the nonlinear spatio-temporal dynamics of
the system. Recently, the coupling between miscible vis-
cous 5ngering and bistable chemical reactions has been stud-
ied in chemical autocatalytic systems providing traveling
fronts between miscible solutions of di6erent viscosities (De
Wit & Homsy, 1999a, b). It was shown that the bistable ki-
netics leads to detachment of droplets of one chemical state
from 5ngers of the other state. Such a shedding of droplets
was clearly linked to the fact that the two stable steady states
of di6erent viscosity are both attractors of the chemical ki-
netics. Unfortunately, experimental evidence of such new
spatio-temporal dynamics has not been provided yet. The
viscosity of a :uid usually depends on the concentration of
solutes but the typical nonlinear reactions that provide trav-
eling fronts have mostly been studied in aqueous solutions
for which the viscosity is basically that of water in both
the reactant and product solutions. However, the association
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of nonlinear pH-driven reaction with appropriate charged
soluble polymer could lead to considerable changes in the
viscosity of the solution as a function of the pH of the so-
lution but this remains to be explored.
Experiments on miscible viscous 5ngering in reactive

systems have addressed the e6ect of the variation of reac-
tant concentrations and of the 5nger pattern on the spatial
distribution of chemical species showing that the :ow can
drastically in:uence the reaction (Nagatsu & Ueda, 2001).
However, in these systems, the chemical reaction does not
feed back on the hydrodynamical motion as the viscosity of
the two solutions at hand is not in:uenced by the reactions.
The only striking evidence of viscosity changes across a
moving front due to reactions occurs in polymerization
fronts where the monomer and the polymer solutions can
exhibit quite strong di6erences in viscosity (Pojman, Gunn,
Patterson, Owens, & Simmons, 1998; Epstein & Pojman,
1998). Nevertheless, in such miscible polymeric systems,
no evidence of bistability exists as the transition from the
monomer solution to the more viscous polymer is usually
irreversible.
In this article, we show by numerical simulations that the

coupling between miscible density /ngering and bistable
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Fig. 1. Sketch of the open Hele–Shaw reactor. (a) front view showing the
cell in the (x; y) plane containing two solutions of di6erent composition
and density; (b) lateral view of the (x; z) plane. Feeding of the Hele–Shaw
cell is made by replacing one plate of the cell by a membrane in contact
with a CSTR. Feeding is achieved along the (xy) plane at z = 0 while
visualization is made along the opposite plane at z = lz .

kinetics can lead to hydrodynamical instability of reaction–
di6usion fronts and droplet formation as well. On the basis
of the concept of spatial bistability, we discuss the possible
experimental realization of such dynamics by implementing
bistable kinetics in an open spatially extended reactor of
Hele–Shaw geometry (two glass plates separated by a gap
of thin width—see Fig. 1).
Chemical autocatalytic reactions such as for instance the

iodate-arsenious acid (IAA) or chlorite-tetrathionate (CT)
reactions are known to produce traveling fronts in aque-
ous solutions. These reactions exhibit the so-called “clock
dynamics” in a batch reactor. For given initial concentra-
tions, the reaction undergoes a sudden single switch towards
thermodynamic equilibrium after an induction period. When
such reactions are carried out in a continuously stirred tank
reactor (CSTR) which is open to mass :uxes, they may fea-
ture bistability between steady states depending on the res-
idence time in the reactor or the input concentration which
both characterize the mass :ow.
Such autocatalytic reactions are also known to provide

density di6erences between reactants and products. These
density changes across the front can drive buoyantly unsta-
ble situations as soon as the heavier solution lies on top of
the lighter one in the gravity 5eld. Fingering of the front
then occurs. Experimental evidences (Nagypal, Bazsa, &
Epstein, 1986; Pojman, Epstein, McManus, & Showalter,
1991; Chinake & Simoyi, 1994; Masere, Vasquez,
Edwards, Wilder, & Showalter, 1994; Carey, Morris, &
Kolodner, 1996; BNockmann & MNuller, 2000; HorvOath,
BOansOagi, & TOoth, 2002) and theoretical studies (Edwards,
Wilder, & Showalter, 1991; Vasquez, Wilder, & Edwards,
1993; Huang & Edwards, 1996; McCaughey, Pojman, Sim-
mons, & Volpert, 1998; Garbey, TaNPk, & Volpert, 1998;
De Wit, 2001; Martin, Rakotomalala, Salin, & BNockmann,
2002; Yang, D’Onofrio, Kalliadasis, & De Wit, 2002) on
density-driven instabilities of chemical fronts have shown
that the coupling between buoyancy-driven :ows and the

chemical reactions can strongly a6ect the stability properties
as well as the nonlinear dynamics of the 5ngering instabil-
ity. Contrary to the viscous 5ngering set-up, where a :uid
of given chemical composition (and thus viscosity) pushes
away another more viscous :uid of di6erent composition,
the above-mentioned density 5ngering experiments are car-
ried out in closed reactors. All these studies have focused
on traveling fronts where the equilibrium state is invading
an initial state that will undergo a spontaneous transition to
equilibrium after a more or less long induction period. Here
we want to consider the situation of a nonmoving front be-
tween two stable steady states of di6erent densities. There-
fore, one must somehow open the reactor to mass :uxes
to create bistability. Bistability in spatially extended sys-
tems has been addressed for instance in studies of di6usive
instabilities in numerous physico-chemical systems such
as nonlinear optics, semiconductors, gas discharges, etc.
(Firth, Scroggie, & McDonald, 1992; Ackemann, Logvin,
Heuer, & Lange, 1995; Breazeal, Flynn, & Gwinn, 1995;
Dewel, MOetens, Hilali, Borckmans, & Price, 1995; MOetens,
Dewel, Borckmans, & Engelhardt, 1997; Bachir, MOetens,
Borckmans, & Dewel, 2001). Considering the speci5c
case of chemistry, the situation remains to be fully clari-
5ed as, contrary to the other systems, bistability is not a
property of the intrinsic chemical kinetics but of the compe-
tition between this kinetics and the mass :ow (Borckmans
et al., 2002).
To account for this coupling between chemical reactions

with in:ow and out:ow of the chemical species in the reac-
tor, the so-called continuous-:ow unstirred reactor (CFUR)
approximation (Vastano, Pearson, Horsthemke, & Swinney,
1987; Pearson, 1993) has often been used and has been able
to describe some of the reaction–di6usion structures and be-
haviors of the ferrocyanide-iodate-sul5te (FIS) reaction in
thin spatial reactors (Lee, McCormick, Pearson, & Swinney,
1994; Lee & Swinney, 1995). In this approximation, the re-
actor is analogous to a two-dimensional reaction–di6usion
system where each point of the system is directly fed by
fresh reactants and releases all the species involved in the
kinetic mechanism. The system is thus described by a 2D
continuum of CSTRs coupled by di6usion and its dynamics
obeys an equation of the type

@c(r; t)
@t

= D∇2c(r; t) + f(c; b) +
(c0 − c(r; t))



; (1)

where c(r; t) stands for the concentration of the various
chemical species in the reactor. c0 is the input concentration
in the feeding of the CSTRs, D is the molecular di6usion co-
eScient while 
 is the residence time of the chemical species
in the CSTRs. For the clock reactions considered here and
particularly for the IAA reaction, the presence of the two
last terms in Eq. (1) may give rise to a cubic function of
the concentrations thereby leading to bistability of homo-
geneous steady states (HSS). As an example, for the IAA
reaction in a CSTR, kinetic studies show that in presence of
excess of arsenous acid, the system is well described by the
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following equation:
dc
dt

=−qc(c − S0)(c + �) +
(c0 − c)



; (2)

where c= [I−], S0 = [IO−
3 ]0 + [I−]0 is the sum of the input

iodate and iodide concentrations, � = ka=kb where ka and
kb are kinetic constants while q = kb[H+]2. The kinetics in
batch reactors (i.e. in absence of any :ow term) admits one
stable steady state c = S0, one unstable steady state c = 0
and one solution c=−� which is outside reaction space as
the concentrations must always remain positive. Reordering
the polynomial by taking the :ow terms into account leads
to a new cubic form −q(c − A)(c − B)(c − D), which,
for given :ow rate k0 = 1=
, can admit three real positive
roots (0¡A¡B¡D). De5ning c′ = c − A; c1 = B − A
and c2 = D − A, the monostable kinetics operating in each
CSTR with constant in:ow and out:ow such as in Eq. (2)
is seen to be equivalent to the following bistable kinetics
(after dropping the primes):
dc
dt

=−qc(c − c1)(c − c2); (3)

where the system now admits two stable HSS c= 0; c1 and
one unstable steady state c=c2 with 0¡c2 ¡c1 and where
c1 and c2 are functions of S0; �; q; 
 and c0.
In Section 2, we make use of the CFUR approximation

to study the nonlinear interplay between bistable chemical
fronts and density-driven 5ngering in Hele–Shaw cells. We
show that such 5ngering in an open Hele–Shaw cell may
lead to the formation of droplets. We then discuss the char-
acteristics of the 5ngering pattern and the in:uence of the
bistable kinetics on it in Section 3. The importance of the
concept of spatial bistability in the experimental realization
of the pattern is addressed in Section 4, where we also dis-
cuss the implication of the notions of spatial bistability that
go beyond the CFUR approximation.

2. Model system

Our model system is a Hele–Shaw cell of length lx, width
ly and gap width lz with lz � lx; ly. The gravity 5eld g is
oriented along x (see Fig. 1).
The :ow inside the cell is modeled using the two-

dimensional Darcy’s law, a good approximation for small
gap widths (Homsy, 1987). It is assumed that the density �
of the :uid depends on the concentration c of a given reac-
tive solute and that the initial con5guration is a nonmoving
front between two stable miscible solutions of di6ering
chemical composition and hence of di6erent density. This
density di6erence is assumed to be small enough so that the
Boussinesq assumption holds. The system then obeys the
following set of equations:

∇ · u= 0; (4)

∇p=−�
�
u+ �(c)g; (5)

�(c) = �1 + (�2 − �1)
(
1− c

c1

)
; (6)

@c
@t

+ u · ∇c = D∇2c − qc(c − c1)(c − c2); (7)

where the viscosity � and the molecular di6usion coeS-
cient D are considered constant in space and time and p
denotes the pressure. The permeability � is equal to l2z =12
for thin Hele–Shaw cells. The kinetic scheme of Eq. (7) re-
sults from the CFUR approximation and is taken as a model
for a bistable situation. The density depends linearly on the
concentration with �2 = �(c = 0)¿�1 = �(c = c1).

To nondimensionalize the equations, we de5ne the char-
acteristic hydrodynamical speed as U =V�g�= with V�=
(�2−�1)=�1 and  =�=�1, the kinematic viscosity. We next
choose L = D=U and 
h = D=U 2 as respective character-
istic length and time scales. The pressure, viscosity, den-
sity and concentrations are scaled by �D=�, �, �1 and c1.
In addition, we de5ne a hydrostatic pressure gradient as
∇p′′ =∇p′ − �′

1 –̇x. Dropping all the primes, the evolution
equations for the dimensionless variables become

∇ · u= 0; (8)

∇p=−u+ (1− c)–̇x; (9)

@c
@t

+ u · ∇c =∇2c − Da c(c − 1)(c − d) (10)

with d = c2=c1 and Da = Dqc21=U
2. Da is in fact the ratio


h=
c between the characteristic hydrodynamical time scale

h=D=U 2 and the chemical time scale 
c =1=qc21, i.e. Da is
the DamkNohler number of the problem. The higher the Da,
the faster the chemical time scale and hence the stronger the
chemical e6ects with respect to the hydrodynamical e6ects.
The dimensionless kinetics now admits two stable (c = 0
and 1) and one unstable c=d (0¡d¡ 1) states where d is
also the limit between the basins of attraction of c = 0 and
1. The nondimensionalized width ly=L takes the form of a
POeclet number Pe=lyU=D and the aspect ratio of the system
is A= lx=ly. Taking the curl of Eq. (9) and introducing the
stream function  such that u=@ =@y and v=−@ =@x, we
obtain the 5nal equations

∇2 =−cy; (11)

@c
@t

+ cx y − cy x =∇2c − Da c(c − 1)(c − d); (12)

where the subscripts denote partial derivatives. In the ab-
sence of any :ow ( = 0), Eq. (12) admits a propagating
front solution between the two stable steady states (Hanna,
Saul, & Showalter, 1982; Saul & Showalter, 1985):

c(x; t) =
1
2

[
1 + tanh

(
−
√

Da
8
(x − vt)

)]

=
1

1 + e−
√

(Da=2)(x−vt)
; (13)
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Fig. 2. Dispersion curves featuring the growth rate ) of the various modes
as a function of their wavenumber k for increasing values of Da.

traveling with a velocity

v=

√
Da
2
(1− 2d): (14)

Note that the width W of the chemical front, arbitrarily
de5ned as the distance between c=0:01 and 0.99, can readily
be found from Eq. (13) to be equal to

W =

√
8
Da

ln(99): (15)

Expressions (14) and (15) thus show that increasing Da
leads to sharper waves traveling with a higher speed. In the
following, we choose the peculiar value d = 0:5 such that
the front between the two stable steady states c = 0 and 1
has zero velocity.
We have performed a linear stability analysis (LSA) of the

planar traveling front (13) with regard to transverse (along
y) disturbances along the lines described in De Wit (2001).
Such an LSA allows to obtain dispersion curves featuring
the growth rate ) of the disturbances as a function of their
wavenumber k. Fig. 2 shows that there is a band of unstable
modes ranging from k = 0 up to a critical value. Increasing
the DamkNohler number destabilizes the system which is then
characterized by larger growth rates and higher most unsta-
ble wavenumber. Quick and sharp fronts between bistable
states (high Da) will thus be more sensitive to 5ngering
than slow and loose ones, a conclusion which is similar
to that obtained for fronts of one stable state invading an-
other unstable steady state (monostable case) as studied in
De Wit (2001).

3. Droplet formation

Using pseudo-spectral methods (Tan & Homsy, 1988),
we integrate model (11)–(12) taking as initial conditions
 = 0 everywhere which corresponds to solutions convec-
tively at rest. Periodic boundary conditions are used in both
longitudinal and transverse directions. For the concentration,

Fig. 3. Density 5ngering in a system of size Pe=512; A=2 shown from
left to right at successive times t=1000; 1500 and 2000. The red and blue
colors correspond to c = 0 and 1, respectively. Upper line: pure density
5ngering in absence of chemical reactions (Da= 0). Lower line: density
5ngering in presence of chemical reactions for small DamkNohler number
(Da=0:01; d=0:5). The chemical reactions enhance the instability leading
to a larger mixing length and an earlier appearance of 5ngers.

we start from a step function between c = 0 and 1 located
at the center of the system and the reverse step function at
the bottom with white noise of 0.1% in amplitude added at
the fronts. The upper front corresponds to the heavier c=0
state placed on top of the lighter c=1 solution which, in the
gravity 5eld, corresponds to a buoyantly unstable situation
leading to density 5ngering. The reverse front at the bottom
is on the contrary stable and features simple di6usive mix-
ing between the two miscible solutions when Da= 0 and a
constant width given by Eq. (15) when Da �= 0. If Da= 0,
there is no chemical reaction and the model features pure
density 5ngering as shown on the upper line of Fig. 3. Dif-
fusion leads to the mixing of the two solutions in the course
of time and a dilution of the mixing zone. If Da �= 0, we
analyze the e6ect of bistable chemical reactions on density
5ngering. Even for very small Da (see Fig. 3), the e6ect
of the chemical reactions can clearly be seen as leading to
higher growth rates (the 5ngers appear more quickly) and
more elongated 5ngers. This tendency increases when Da
is larger (compare Figs. 3 and 4), i.e. the wavelength of the
5ngers becomes smaller (larger wavenumber) and appear
faster. This is coherent with the predictions of the linear sta-
bility analysis shown in Fig. 2.
It is striking to see on Fig. 4 that, for higher Da, the

bistable kinetics leads to formation of droplets of one steady
state detaching from the 5ngers and invading the other sta-
ble steady state. As pure density 5ngering has no preferred
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Fig. 4. Density 5ngering in the presence of chemical reactions. The
DamkNohler number is increased from top to bottom from Da=0:04; 0:14
up to 0:20, respectively, with d = 0:5 and Pe = 512; A = 2 as in Fig. 3.
From left to right, the system is shown at successive times t=500, 1000,
1500 and 2000.

direction of propagation, it features the same extension of
upwards and downwards 5ngers with respect to the ini-
tial position of the front when the density pro5le is linear
(Wooding, 1969; Manickam & Homsy, 1995; Fernandez,
Kurowski, Petitjeans, & Meiburg, 2002). Consequently,
there will on average be as much droplets detaching from
the bottom than from the top. The mechanism of formation
of droplets is the same as that for viscous 5ngering with
bistable kinetics (De Wit & Homsy, 1999a, b). In both
cases, the high-mobility :uid enters the 5nger and encoun-
ters less mobile :uid at the tip of the 5ngers. This meeting
obliges the turn away of the more mobile solution which is
reentering the back of the 5nger as the :uid is incompress-
ible. Hence, each 5nger is carrying a little vortex around its
tip which leads to a decrease of the concentration behind
the tip (see Fig. 4 for Da = 0:04 for instance). If the con-
centration at the location behind the tip crosses the value d
of the unstable steady state, the concentration gets entrained
by the other attractor and the system switches locally from
one stable steady state to the other resulting in a pinching
o6 of the tip. This tip then detaches from the bulk and gives
rise to a droplet. The formation of droplets of one steady
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Fig. 5. Mixing length as a function of time for various values of the
DamkNohler number.

state into the other is thus a consequence of the bistable
kinetics. The size of the droplets is immediately related to
the size of the 5ngers at formation time. For Da=0:04, the
5ngers are larger than for Da=0:14 (see Fig. 4) and hence
the droplets will on average be larger in the 5rst case.
At the low POeclet value chosen here, no tip splitting is ob-

served and density 5ngering alone leads to an overall coars-
ening of the 5ngers (Homsy, 1987). Hence, at later times
far in the nonlinear regime, there are fewer and fewer 5n-
gers that become larger. The droplets formed will thus have
increased size in the course of time. Such as in the case of
viscous 5ngering, droplets are only transients. Ultimately,
they all die as the critical radius above which one droplet
of one steady state into the other steady state is growing
in time is in5nite for the bistable kinetics studied here (De
Wit & Homsy, 1999a). We also remark that beyond a given
value of Da, there is saturation of the in:uence of chemistry
in the sense that there is not much di6erence in the wave-
length and growth rate of the instability (compare Da=0:14
and 0.20 in Fig. 4). The role of Da can further be analyzed
looking at the mixing length of the 5ngers (see Fig. 5). This
distance characterizing the mixing zone between the two
solutions, is arbitrarily de5ned here as the zone for which
0:01¡ Zc(x; t)¡ 0:99 where Zc(x; t) is the concentration pro-
5le averaged along the y direction. We note that the higher
Da, the quicker the 5ngering characterized by a sudden lin-
ear increase of the mixing length after a certain transient.
Abrupt decrease of the mixing zone corresponds to the death
of droplets. Finally, let us note that, when d �= 0:5, the pla-
nar reaction–di6usion front moves with a given velocity v.
As has been shown for the case of viscous 5ngering, this
does not a6ect the droplet formation scenario but leads to
changes in the relative size of the droplets of both states as
well as to entrainment of the 5ngers.
The dynamics resulting from the coupling between

bistable chemical reactions with density 5ngering studied
here shows similarities with the reactive viscous 5ngering
studied by De Wit and Homsy (1999a, b). It is known that,
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in absence of chemistry, the density-driven linear instability
problem is equivalent to the viscous one when the density
and viscosity pro5les are both linear in c. For most :uids
however, the density pro5le is linear as for IAA solutions
for instance while the viscosity pro5le is nonlinear (as mod-
eled by De Wit & Homsy, 1999a, b). In this case, connec-
tions exist also between the stability problems (Tan, 1987;
Manickam & Homsy, 1995). The nonlinear dynamics on
the other hand are not analogous since the coupling terms
between the velocity and concentration 5elds are di6er-
ent for buoyancy and viscously driven cases (Rogerson &
Meiburg, 1993; Manickam & Homsy, 1995). As an exam-
ple, in density 5ngering, the extension of the mixing zone
is symmetric with regard to the mean front position while it
is not in viscous 5ngering because of the injection velocity.
In presence of chemical reactions, these di6erences lead to
a respectively symmetric and asymmetric averaged num-
ber of droplets with regard to the mean front position for
density and viscous 5ngering. Besides this, the in:uence
of the chemistry on the nonlinear dynamics looks quite
analogous in both density and viscous-driven instabilities.
The droplet formation mechanism is driven in each case by
the rapid switch from one stable steady state to the other
at the rear of the 5ngers. Reactive 5ngering leads also in
both cases to 5ngers with smaller wavelengths appearing
more quickly, i.e. the reactive system is more unstable. The
balance between chemistry and hydrodynamics depends
on the DamkNohler number Da = D
c=U 2 constructed with
U =V�g�= for density 5ngering and with the injection ve-
locity for viscous 5ngering. We observe that in both cases
(a) droplet formation appears above a critical Dal of order
0.01–0.02 on the time scale screened in our simulations;
(b) there is another critical Dau ∼ 0:12 above which the
e6ect of chemistry saturates; (c) the mixing lengths have
analogous trends. Further studies are needed to have insight
into the dynamics in presence of tip splittings for instance
as well as more re5ned quantitative informations.

4. Spatial bistability in extended open reactors

The results of Sections 2 and 3 have been obtained mak-
ing use of the CFUR approximation, i.e. considering a 2D
reactor of area lx · ly assuming that the in:ow and out:ow
along the orthogonal direction z are incorporated into the
bistable kinetics as explained in the introduction. We now
want to point out that the situation along the z axis is usu-
ally not trivial because of the existence of spatial bistability
along z (Blanchedeau & Boissonade, 1998; Blanchedeau,
Boissonade, & De Kepper, 2000; Borckmans et al., 2002).
To produce extended spatial systems leading to multiple

steady states, the use of one-side fed reactors (OSFR) op-
erated with reactions exhibiting HSS bistability in a CSTR
is most appropriate. The usual advection-free OSFR reac-
tors consist of a thin disk of gel (typically 0:2 mm thick)
pressed against impermeable walls while one of its faces is in

contact with the contents of a CSTR (see Fig. 1b). Often an
unidirectional porous inorganic membrane (e.g. Vycor from
Corning Glass or Anotec from Whatman) is placed between
both parts in order to rigidly maintain the disk of gel. In the
context of the study of reaction–di6usion patterns the gel
is a prerequisit in order to quench any perturbing hydrody-
namical :ow. The peculiar case of convective :ows will be
addressed later. So let us assume for the moment that we
are still in a gel and that u= 0.
The dynamics of an OSFR is described by the following

set of equations, respectively, for the CSTR and the gel

@cs
@t

= f(cs) +
(c0s − cs)



+ rV

D
lz

(
@c
@z

)
z=0

; (16)

@c
@t

= f(c) + D∇2c; (17)

where c0s , cs and c are the concentrations of the species, re-
spectively, in the input :ow of the CSTR, in the CSTR it-
self, and inside the gel, lz is the thickness of the gel, rV the
ratio of the volume of the gel to the volume of the CSTR,
and z the direction normal to the CSTR/gel interface. The
f’s are the reaction rates. In the right-hand side of Eq. (16),
the second term represents the input and output :ows of the
species. It contains all the expandable control parameters of
the system. The third term results from the di6usive :ux of
the species at the interface between the gel and the CSTR
and represents the feedback of the gel contents on the CSTR
dynamics. When the volume of the CSTR is large with re-
gard to the volume of the gel (rV � 1), this last term can
usually be neglected so that the chemical state of the CSTR
is independent of the state of the gel and the concentrations
in the CSTR act as a Dirichlet boundary condition for Eq.
(17) at z=0 (in contact with the CSTR), whereas a no-:ux
boundary condition is applied at z= lz (along the imperme-
able wall). All other boundaries are impermeable.
Let us open a parenthesis to be more explicit about the

IAA reaction. If all di6usion coeScients are equal, its ki-
netics may be reduced to the one variable kinetic function
f(c)=−qc(c−S0)(c+�) as mentioned in Eq. (2) by mak-
ing use of the conservation law of iodine species (iodide and
iodate) which sum up to S0. The value of S0 is imposed by
the feeding of the CSTR whereas the relative values of io-
dide and iodate concentrations also result from the working
conditions of the CSTR, i.e. essentially the residence time 
.
We will consider that these conditions impose a concentra-
tion c0 of iodide at the boundary between the CSTR and the
gel. In the gel, the dynamics then reduces to the following
one variable model written in dimensionless form:

@c
@t

=−c(c − 1)(c + 0) +
@2c
@z2

; (18)

where c = [I−]=S0, t = t∗=
, z = z∗=
√
D
 with 0 = �=S0 =

ka=kbS0 ¿ 0 and 
= 1=qS2
0 . The dimensionless thickness of

the gel is here Lz = lz=
√
D
 with all starred quantities be-

ing dimensional. As stated before, because of the conserva-
tion law, the iodate concentration is simply S0(1 − c). The
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Fig. 6. Zone of spatial bistability in the (c0−Lz) phase plane for 0=0:0021.
Below the curve, two di6erent spatial pro5les such as shown in Fig. 7 can
coexist. If c0 becomes too large, spatial bistability disappears. Outside
the zone of spatial bistability, only one spatial solution is observed.

spatial term is written along the depth direction of the gel. In-
deed, we do not expect spatial variations along the two other
directions because the feeding is uniform and the di6usion
coeScients are taken equal (no transverse patterning insta-
bilities). The steady state concentration pro5les are then
given by

@2c
@z2

= c(c − 1)(c + 0) (19)

with the following boundary conditions: Dirichlet at the
CSTR/gel interface:

c(z = 0) = c0 (20)

and no :ux at the impermeable wall and in particular

@c
@z

∣∣∣∣
z=Lz

= 0: (21)

Owing to the presence of the CSTR, 0¡c0 ¡ 1 as the 0 and
1 values would, respectively, correspond to zero or in5nite
residence time. Therefore no HSS may exist in the gel. The
steady pro5les can easily be obtained by a simple quadra-
ture, however, they are in an implicit form and involve an
elliptic function. Little insight can be gathered in such a pro-
cedure and one better resorts to numerical integration. Even
for the simple IAA system considered here the result is by
no means trivial and depends on the values of c0 and Lz, the
thickness of the gel slab, which are the sole parameters of
the problem (Benyaich, Dewel, & Borckmans, 2003). Sim-
ilar theoretical results have been obtained for reactions with
more complex kinetics and have been corroborated exper-
imentally (Blanchedeau & Boissonade, 1998; Blanchedeau
et al., 2000). The main result is exhibited in the parameter
space (c0; Lz) (Fig. 6).
Inside the cusped region, Eq. (19) exhibits three inhomo-

geneous solutions satisfying the imposed boundary condi-
tions. Two are stable while the remaining one is unstable

0 0.5 1 1.5 2 2.5 3 3.5

z

0.0

0.2

0.4

0.6

0.8

1.0

c(
z)

Fig. 7. Spatial bistability. Concentration along the gap width from z = 0
to Lz for c0 = 0:05; Lz = 3:5 and 0 = 0:0021. For the same values of
parameters, the system can feature two di6erent fronts represented here,
respectively, in plain (up solution) and dashed (down solution) curves.

(we will not discuss metastability here). We see in Fig. 6
that state multiplicity only exists for rather small c0 (weak
iodide concentration in the CSTR). For a given c0, the bista-
bility region of these pro5les arises for intermediate thick-
nesses of the gel slab. An example of the pro5les that may
exist for completely identical conditions (hence the name
spatial bistability attributed to the phenomenon) is shown
in Fig. 7. One of the pro5les (dashed line) varies only very
weakly in space indicating that the concentration of iodide
hardly changes in the z direction. The other pro5le corre-
sponds to a switch where the iodide concentration steadily
increases through the gel. The iodate pro5les are comple-
mentary. Outside the cusped region of Fig. 6, only one pro-
5le exists and the system is monostable. For small Lz only
the weakly varying pro5le remains, while for larger Lz only
the switching state exists.
A typical bistability diagram exhibiting an hysterisis

can be drawn plotting for instance the value of the io-
dide concentration c(Lz) at the point furthest away from
the CSTR/gel interface as a function of Lz (see Fig. 8).
This diagram suggests that bistability between the pro-
5les occurs through two back-to-back saddle–node bi-
furcations the loci of which trace the boundaries of the
cusped region. The two pro5les also di6er by the iodide
(and iodate) mass :uxes that cross the CSTR/gel inter-
face. More detailed information on the phenomenon of
spatial bistability may be found in Blanchedeau and Bois-
sonade (1998); Blanchedeau et al. (2000) and Borckmans
et al. (2002).
The results we have just discussed show that for a clock

reaction such as the IAA, bistability arises from the com-
petition between the chemical kinetics and mass :uxes
that result from the feeding of the reactor. In the CSTR,
bistability is between HSS because of the strong turbulent
mixing while in the OSFR bistability is spatial and occurs
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Fig. 8. Concentration at the edge z = Lz of the system as a function of
the gap width Lz . Here, c0 =0:05 and 0=0:0021. There is a range of gap
widths for which the system can feature both up and down solutions, a
situation characterizing the spatial bistability.

between two concentration pro5les maintained by the mass
:ux across the CSTR/gel boundary. In the conclusion, let us
discuss how the concept of spatial bistability could be in-
corporated to experimentally visualize the density 5ngering
and droplet detachment phenomena.

5. Conclusions

To produce experimentally spatially extended fronts be-
tween bistable states, we propose to use the principle of an
OSFR where the gel would be replaced by a Hele–Shaw
cell, one glass plate of which would be substituted by a
sheet of a porous membrane in order to connect the cell
to a CSTR (see Fig. 1). Convective phenomena are then
again allowed inside the Hele–Shaw cell as in the experi-
ments of BNockmann and MNuller (2000), albeit they would
be protected by the porous membrane from the turbulent
:ow in the CSTR. Such a device should allow the observa-
tion of the coupling between hydrodynamical motions and
bistable kinetics. In particular, if the two chemical states
have di6erent densities, 5ngering phenomena as well as the
droplet shedding could appear. However, the switching state
along the z direction exhibits no steep front for the IAA
system but a gradual change of concentration between a re-
gion of low iodide concentration close to the feeding bound-
ary z = 0 to a high iodide concentration state deeper in the
thickness of the gel (z → Lz). Hence, the density of the
medium varies accordingly along the z direction as the den-
sity is a decreasing function of iodide. This e6ect could be
by itself the motor of convective motion in the gap even in
the absence of a front connecting the two spatial bistable
states along the xy plane as studied in Sections 2 and 3.
Although this does not preclude the possibility of droplet
formation this may render matter much more complicated.

Ideally, reactions with sharp jumps and reversible direc-
tion of propagation of the switch pro5le such as for the
chlorine dioxide-iodide (CDI) reaction should be chosen
(Blanchedeau et al., 2000). Furthermore, the unidirectional
5ne porous membranes (e.g. Vycor or Anotec membranes
5lled with a gel) of variable width could be used to absorb
the steepest part of the gradient in the membrane part itself.
One would thus be left in the rest of the reactor in conditions
of uniformity close to the ideal ones used in Eqs. (4)–(7).
In conclusion, the use of a one-sided fed Hele–Shaw re-

actor could allow the experimental study not only of the
5ngering phenomena discussed here but also of many other
pattern forming instabilities arising from the coupling be-
tween reaction, di6usion and convection in controlled open
conditions.
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