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A macroscopic model to describe the spatio-temporal patterns observed in the CO+O2 reaction on Pt(110) is
presented. We consider mass transport in the adsorbed layer as a response to the gradient in chemical potential
of adsorbed CO and explicitly take into account the coupling between diffusion and the adsorbate-induced
structural transformation of the substrate. Numerical integration of the model equations in two-dimensions
revealed target patterns, spiral waves as well as subharmonic standing-wave patterns that closely resemble those
observed in experiments. Our results also show that synchronization of the surface can be achieved through
nucleation and growth processes even in the absence of gas-phase coupling.

I. Introduction

A wide variety of complex spatiotemporal phenomena has
been observed in heterogeneously catalyzed reactions.1 So
far, the richest collection of spatiotemporal patterns observed
was obtained in the CO oxidation on the Pt(110) single crystal
surface, under isothermal and ultra-high vacuum conditions.
Depending on the values of the control parameters – the tem-
perature T, as well as the CO and O2 partial pressures – pat-
terns such as propagating reaction fronts, spiral waves,
targets, standing waves, oscillating cellular structures and che-
mical turbulence have been observed.2–7

Before these spatial features could be resolved, the average
temporal features were already under scrutiny for some time.
Work function measurements revealed regular as well as chao-
tic oscillations in the average surface coverages of the two
reacting species and in the rate of CO2 production.

8–10

The mechanism underlying the oscillations has been clearly
established:10–12 the most stable phase of the clean Pt(110) sur-
face is reconstructed, exhibiting the so-called ‘‘missing-row’’
structure, in which every second row in the [11̄0] direction is
lacking (Fig. 1). It is denoted 1� 2 after its crystallographic
signature. Within a certain temperature range, the adsorption
of CO lifts the reconstruction, that is, causes the surface to
revert to the termination of the fcc bulk structure – the 1� 1
square arrangement. As oxygen adsorption is enhanced on
the 1� 1 surface,13 an autocatalytic loop is formed that is
responsible for oscillations.
Based upon this mechanism, a kinetic model was proposed

that could reproduce well the regular oscillatory behaviour
of the CO+O2 reaction on Pt(110).14 The KEE model, as it
became known, consists in a set of three coupled ODEs
describing the evolution of the average surface coverage of
adsorbed CO (COad) and oxygen (Oad) as well as the behaviour
of a third variable representing the ratio of the surface in the
1� 1 configuration.
However successful in reproducing regular oscillations, the

KEE model displays a low-dimensional chaotic attractor only
for unrealistic values of the parameters. This finding reinforced

the belief, already suggested by previous experiments,8 that
chaotic behaviour of average rates was connected to underly-
ing turbulent spatio-temporal patterns. In order to display
chaotic behaviour, the dynamical system had to acquire infi-
nite degrees of freedom through spatial coupling. Thereupon,
spatial effects were accounted for merely by adding to the sys-
tem of ODEs a linear Fickian diffusion term for COad ,

15 oxy-
gen sticking so strongly to the surface that it can in practice be
considered as immobile. This approach was clearly inspired by
the successful modelling of spatio-temporal phenomena in che-
mical reactions in solution, such as the Belouzov–Zhabotinski
reaction.
In heterogeneous catalysis though, oscillations do not take

place in a dilute medium. On the contrary, in most situations
the couple adsorbate–substrate exhibits typical properties of

Fig. 1 Ball model illustrating the 1� 1$ 1� 2 surface phase transi-
tion of the Pt(110) surface. The ‘‘missing-row’’ structure shown on
the right is created by removing (partially) every second row in the
top part of the 1� 1 structure on the left and then placing the displaced
atoms (shown in grey) on top of the rows in the lower half of the sur-
face.
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a condensed system, like the structural phase transition (SPT)
of the Pt(110) surface in the present case. Moreover, at least
during a part of the oscillation cycle, the adsorbed layer is
quite densely packed. Thus, the effects of adsorbate–adsorbate
interactions and/or site competition between reactants cannot
be neglected.
The CO oxidation on Pt(110) is a striking example of non-

ideal behaviour in transport processes during a catalytic reac-
tion. Because the SPT of the substrate plays such a fundamen-
tal role in the oscillatory mechanism, there must be strong
implications to mass transport in the adlayer which are unac-
counted for in the traditional reaction–diffusion approach.
Since the COad–1� 1 configuration is energetically preferred
to CO adsorbed on the 1� 2 phase, diffusion of CO molecules
from 1� 2-regions to 1� 1-regions must be strongly enhanced.
Following CO adsorption on the 1� 2 phase, a rapid
1� 2! 1� 1 conversion causes the nucleation and growth of
COad–1� 1 patches, which subsequently act as traps for CO
molecules migrating on adjacent reconstructed domains.
A first attempt to incorporate analogous features in a model

of an heterogeneous catalyzed reaction was made by Tammaro
and Evans,16 but for the CO-oxidation on Pt(100). They
regarded the adsorbate–substrate system as a percolating net-
work and analyzed the propagation of reactive pulses in that
perspective.
Here we take a somewhat different, more general, approach

and consider mass transport in the adsorbed layer as a global
response to a gradient in the chemical potential of the mobile
adspecies, not simply to the concentration gradient as assumed
in Fick ’s first law. In this ‘‘nucleation and growth’’ mechan-
ism, from the metastable 1� 1 nuclei created in a first step –
where CO coverage is high – some grow to larger domains at
the expense of the evaporation of smaller islands. This process
is simply the manifestation of Ostwald ripening in the present
context. It leads to a distribution of CO-rich and CO-poor
regions in the adsorbed layer, where the reaction with oxygen
takes place with different probabilities. Ultimately, it provides
a powerful mechanism of synchronization over long distances
that is responsible for the establishment of spatio-temporal
patterns.
Such a strong spatial coupling cannot arise from Fickian dif-

fusion, as clearly demonstrated by the fact that the KEE model
supplemented with a Fickian term is unable to produce robust
spatio-temporal patterns.15 Therefore it was reckoned that
spatial coupling alone could not give rise to synchronized
behaviour in the CO oxidation on Pt(110) and since then its
occurrence has been mainly attributed to the action of gas-
phase coupling.1,6,15,17,18,19

However, the notion that global coupling through the gas
phase is a necessary ingredient for coherent spatio-temporal
pattern formation in this reaction has been challenged by
Monte Carlo simulations.20 These studies also stressed the cru-
cial role played by nucleation and growth processes in the
establishment of synchronized behaviour on the CO+O2/
Pt(110) system. Notwithstanding, the ability of MC simula-
tions to provide a basis for the interpretation of experimental
results is strongly limited by the fact that the number of parti-
cles involved is too small.
So, here we go back to a macroscopic description in terms of

generalized mass balance equations,21 which consistently
incorporates the coupling between diffusion in the adlayer
and the SPT through a nonlinear transport term. As we shall
see, the model we propose is able to reproduce the main qua-
litative features of the observed spatio-temporal patterns,
including their symmetry.
The present manuscript is organized as follows. In section II,

we introduce the generalized ‘‘ reaction–diffusion’’ model that
stems from the conceptual framework briefly outlined above.
In sections III and IV, we present and discuss numerical
results, respectively in one and two dimensions. Section V is

reserved for a discussion of the approach devised here, in par-
allel with the role of gas-phase coupling. A brief conclusion
(section VI) ends the paper.

II. The model

An adsorbate-induced phase transition of a metal surface is a
very complex phenomenon that nevertheless can be qualita-
tively modelled with great simplicity as a first order transition
in the framework of the lattice-gas.22 In the mean-field approx-
imation, the total free energy density of the couple adsorbate–
surface is a sum of three contributions

f ¼ fad þ fs þ fint; ð2:1Þ

where fad is the free energy density of adsorbed particles

fad ¼ �E1�2yþ ey2=2þ RT ½y ln yþ 1� yð Þ ln 1� yð Þ�;
ð2:2Þ

fs the free energy of surface atoms:

fs ¼ DEkþ RT k lnkþ 1� kð Þ ln 1� kð Þ½ �; ð2:3Þ

and fint the interaction energy responsible for the stabilization
of the otherwise metastable 1� 1 phase:

fint ¼ �ayk: ð2:4Þ

y is the adsorbate coverage and k the percentage of surface in
the 1� 1 phase. Furthermore, �E1�2 is the adsorption energy
in the 1� 2 phase while DE is the energy difference per surface
atom between the clean 1� 1 and 1� 2 surfaces. Finally, e is
the energy of lateral interaction between adparticles and a an
adsorbate–surface interaction energy parameter.
The fact that, as shown in Fig. 2, for temperatures below the

critical temperature T < Tc and for suitable choices of the
energetic parameters – DE and a – the equilibrium chemical
potential

meq yð Þ ¼ � E1�2 þ eyþ RT ln y= 1� yð Þ½ �

� a
1þ exp DE � ayð Þ=RT½ � ; ð2:5Þ

is a non-monotonous function of coverage, provides the
unequivocal signature of a phase transition. For T < Tc , even
in the case of repulsive adsorbate–adsorbate interactions
(e > 0), a system with initial homogeneous coverage within
the range of thermodynamic instability, will spontaneously

Fig. 2 Shape of the equilibrium chemical potential as the parameter
a/RT varies at fixed DE/RT ¼ 6.0 and e ¼ 0. Note the existence of a
second-order transition at a/RT� 6.0.
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separate into high and low coverage domains driven solely by
adsorbate–substrate interactions.
The free energy eqns. (2.2)–(2.4) can be straightforwardly

extended to a ternary mixture composed of adsorbed CO
molecules and O atoms plus the unoccupied adsorption sites.
The contribution from the adlayer reads then

fad ¼ � E1�2
CO yCO � E1�2

O yO þ RT ½yCO ln yCO
þ yO ln yO þ 1� yCO � yOð Þ ln 1� yCO � yOð Þ�; ð2:6Þ

where E1�2
CO (E1�2

O ) is the CO (oxygen) adsorption energy in
the reconstructed phase, and yCO and yO are the coverages
of the co-adsorbed species. On Pt(110), adsorbed oxygen
does not affect the surface structure, i.e. it does not induce
reconstruction of the 1� 1 surface nor destabilize the recon-
structed 1� 2 phase.13,23 Therefore, the interaction energy is
simply

fint ¼ �ayCOk: ð2:7Þ

Notice that on writing (2.6) we neglected interadsorbate inter-
actions. In what follows we will focus exclusively on the effect
of the adsorbate-induced SPT (i.e. we take e ¼ 0).
In order to account for spatial inhomogeneities varying in a

very long scale compared to interlattice spacing, a free energy
functional is constructed by adding to the free energy density
(2.1), with terms on the r.h.s. given by (2.3), (2.6) and (2.7),
the contributions due to coverage gradients up to first order,
then integrating over the whole surface area:

F yCO; yO; kf g ¼
Z

dr f yCO; yO; kð Þ þ g
2

HyCOð Þ2
h i

: ð2:8Þ

Above, the assumption was made that the contribution from
CO coverage gradients dominates over all other possible con-
tributions of the same sort, respecting the same symmetries. It
can be justified by the leading role played by migration and
trapping of CO molecules on 1� 1 regions, in the process that
leads to the formation of interfacial boundaries. Moreover, the
adsorption of CO is solely responsible for triggering the phase
separation and besides, CO is the only mobile species present
on the surface. Indeed, in the temperature range where the
effects we wish to describe were observed, the oxygen mobility
is so low that it may be neglected.
The mass current flow of adsorbed CO, JCO , is the gradient

of the chemical potential:

JCO ¼ �MHmCO; ð2:9Þ

where

mCO ¼ dF yCO; yO; kf g
dyCO

; ð2:10Þ

and M is the mobility of adsorbed CO, supposedly constant.
The mass balance equation for the surface coverage of CO
then takes the following form:

@yCO
@t

¼ KnCO yCO; yOf g � HJCO: ð2:11Þ

Spatial derivatives are absent from the evolution equation for
yO(r,t); thus,

@yO
@t

¼ KnO yCO; yO; kf g: ð2:12Þ

The kinetic terms KnCO and KnO, accounting for the exchange
processes between the adsorbed layer and the gas phase are
essentially those in the KEE model,14 apart from the minor
simplification of having both saturation coverages set to
unity:

KnCO ¼ pCOsCOkCO 1� yCOrð Þ � kdyCO � kryCOyO; ð2:13Þ

KnO ¼ pO2
sOkO2

1� yCO � yOð Þ2�kryCOyO: ð2:14Þ

The three terms in the r.h.s. of eqn. (2.13) describe respectively
CO adsorption, CO desorption and the oxidation reaction
through the Langmuir–Hinshelwood mechanism. CO adsorbs
through a precursor state without adsorption site inhibition
from pre-adsorbed oxygen. The effect of precursor adsorption
is accounted for by the exponent r > 1, in eqn. (2.13).24 Oxy-
gen adsorption is dissociative, thus second order on the num-
ber of empty sites. Furthermore, there is no desorption term in
eqn. (2.14) because at the temperatures considered here the
rate at which strongly bounded oxygen leaves the surface is
so low that it can be neglected. kCO and kO2

are the rates at
which respectively CO and O2 hit the surface at unit pressure,
whereas kd and kr are, in the order mentioned, the desorption
and reaction rate constants. These are described by Arrhenius
laws where the values of the pre-exponential factors and acti-
vation energies have been determined in several experiments
and are comprehensively listed in ref. 14.
Oscillations are not predicted by eqns. (2.11) and (2.12)

alone; the structural transformation of the substrate must be
taken into account also. Like in ref. 14, the coupling between
a third equation ruling the dynamics of the SPT and the evolu-
tion equations for the coverages – eqns. (2.11) and (2.12) – is
achieved through the dependence of the oxygen sticking coeffi-
cient on the state of the surface, that is on the variable k, by
writing

sO kð Þ ¼ s1x1O kþ s1x2O 1� kð Þ; ð2:15Þ

where s1�1
O and s1�2

O are respectively the sticking coefficients in
the 1� 1 and 1� 2 phases. We take s1�1

O /s1�2
O ¼ 2 which in a

context where the [11̄0] atomic rows are identified as the active
sites for initial adsorption and dissociation of molecular oxy-
gen, must be considered as a theoretical upper limit. Neverthe-
less this value agrees well with the few experimental results
which do suggest that the 1� 1 surface is almost twice as active
as the 1� 2 with respect to oxygen adsorption.13 In ref. 14 a
smaller ratio of s1�1

O /s1�2
O ¼ 1.5 was used. Yet, we found that

the difference did not affect qualitatively the outcome of the
simulations and so, for clarity purposes, we preferred to use
the integer value. On the other hand, the sticking coefficient
for CO adsorption, sCO , is unity.
The equation describing the relaxation of the surface struc-

ture, hence the local evolution of k(r,t), must reflect the fact
that the surface is able to entirely switch from one atomic
arrangement to another without constraint, namely in the
form of a conservation law. As it is clear from Fig. 1, even
though the number of Pt atoms is conserved, the area of either
surface arrangement is not. The displaced atoms form a terrace
in the 1� 2 configuration over the 1� 1 surface leaving those
portions of the surface where they used to sit also in the
1� 2 configuration. We can think of the reverse process,
1� 2! 1� 1, as those atoms being returned to their original
positions. Of course, the microscopic roughening of the surface
due to the build up of numerous terrace layers one atom high
cannot be described by our mean-field model. We just suppose
there will be regions where the average density of reconstructed
patches largely surmounts the portions of the surface display-
ing a 1� 1 arrangement – low k regions – and that elsewhere
on the surface, at the same time, exactly the opposite is hap-
pening – high k domains. Like the coverages, k is a coarse
grained variable. It must be interpreted as the local area frac-
tion of the 1� 1 phase averaged over a domain of linear size
RD much larger than the interlattice spacing a, RD� a.
In other words, k(r,t) is a non-conserved order parameter

and its dynamics is purely relaxational.25 Accordingly, we
write:

Phys. Chem. Chem. Phys., 2002, 4, 1355–1366 1357

Pu
bl

is
he

d 
on

 1
9 

M
ar

ch
 2

00
2.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ite

it 
U

tr
ec

ht
 o

n 
23

/1
0/

20
14

 0
3:

04
:2

5.
 

View Article Online

http://dx.doi.org/10.1039/b109389b


@k
@t

¼ �L
dF yCO; yO; kf g

dk

¼ �L DE þ RT ln
k

1� k

� �
� ayCO

h i
; ð2:16Þ

where L is a constant fixing the time scale of the reconstruction
process.
It is insightful to make a parallel with the theory of phase-

ordering dynamics by observing that, if one considers just
the transport of adsorbed CO coupled to the dynamics of sur-
face relaxation, the restricted model that follows – consisting
of eqns. (2.16) and (2.11) (without the kinetic source term) –
belongs to the category of model C in the Hohenberg–
Halperin classification.25

As mentioned before, the values of the rate constants for
kinetic processes, kCO , kO2

, kd and kr are known from experi-
ment with reasonable precision. In contrast, the thermody-
namic parameters for the SPT – DE and a – have not been
directly measured yet but they can be indirectly inferred from
a scanning tunneling microscope (STM) study of the structural
transformation,12 in which the increasing number of nucleated
1� 1 patches was evaluated as a function of increasing CO
exposure.
At a certain critical exposure, nucleation of small 1� 1

regions begins. This exposure value corresponds to a surface
coverage of yCO� 0.2. Apparently, the lifting of the recon-
struction is completed at yCO� 0.5.12,26 Upon further CO
exposure, the density of the 1� 1 phase increases monotoni-
cally, until eventually the saturation coverage, yCO ¼ 1, is
attained. Assuming a simple proportionality relation between
the number of patches and the surface state variable k, and
also between exposure and surface coverage (yCO), the experi-
mental data can be fitted by the steady-state solution of eqn.
(2.16):27

ks ¼
1

1þ exp DE � ayð Þ=RT½ � : ð2:17Þ

In particular, the curve for DE ¼ 5.0/RT, a ¼ 18.0/RT,
drawn in Fig. 3 gives an excellent fit.
As usual, it is convenient to write the model equations in

terms of adimensional variables and parameters.21 Thus, upon
substitution of (2.13) and (2.14) into respectively (2.11) and
(2.12), we divide them both, as well as (2.16), by kr . We now
define a new adimensional time, t ¼ krt, as well as the two adi-
mensional pressures PCO ¼ pCOkCO/kr and PO2

¼ pO2
kO2

sO2
/

kr .
We further note that the interfacial energy parameter

appearing in (2.8) can be written as g ¼ RTx0
2,28 where x0 is

a phenomenological characteristic length related to the range
of interactions. We then use this length to define a new adi-
mensional space variable X ¼ x0

�1x. Upon these transforma-
tions, the model equations read:

@yCO
@t

¼PCO 1� yCO3
� �

� dyCO � yCOyO

þ �MMH2 ln
yCO

1� yCO � yO

� �
� �aak� H2yCO

� �
ð2:18Þ

@yCO
@r

¼ PO 1þ kð Þ 1� yCO � yOð Þ2� yCOyO ð2:19Þ

@k
@r

¼ ��LL D�EE þ ln
k

1� k

� �
� �aayCO

h i
; ð2:20Þ

where d ¼ kd/kr , M̄ ¼ RTM/krx0
2, L̄ ¼ RTL/kr , �aa ¼ a/RT

and DĒ ¼ DE/RT. For the exponent characterizing percursor
adsorption, that appears in eqn. (2.13), we took r ¼ 3, the
nearest integer smaller than the estimated value.14

In most situations, measuring quantities like the mobility is
extremely hard.29 Multiple competing effects concur to muddle
the interpretation of results, particularly when surface recon-
struction is involved.30 Therefore, we will regard M̄ and L̄ as
adjustable parameters. Choosing a value for L̄ did not prove
hard because the period of homogeneous oscillations is quite
sensitive to the choice of L̄. This is easily understood because
L̄ actually measures the speed at which the newly stabilized
phase develops; and it is indeed the surface structure reversal,
through the variation of the oxygen sticking probability, that is
responsible for the oscillations, fixing their timescale. The
value L̄ ¼ 5.0� 10�4 yield a period of about 2 to 3 s, depend-
ing on the value of the other rate parameters, much the same as
the typical time scale of the observed oscillations. We use it in
all the simulations presented here.

III. Numerical results in one dimension

We solved numerically eqns. (2.18)–(2.20) by a finite difference
integration scheme at a fixed temperature – near 500 K corre-
sponding to RT ¼ 1 (the energy parameters DE and a are in
kcal mol�1 and R in kcal mol�1 K�1) – a value well inside
the range where complex spatio-temporal phenomena was
observed. In our study, we consider the reduced pressures
PCO and PO2

as bifurcation parameters and proceed to an
investigation of parameter space (PCO–PO2

) in search for spa-
tio-temporal behaviour of the kind observed experimentally.

A. Spatio-temporal evolution

Fig. 4 shows space–time plots characteristic of the three types
of spatio-temporal behaviour found in the simulations, respec-
tively homogeneous oscillations (Fig. 4a), standing waves (Fig.
4b) and spatio-temporal chaos (Fig. 4c). To generate these
plots, numerical integration of the model equations was per-
formed in boxes made up of 256 discretization cells with no-
flux boundary conditions (BC). The initial condition was, in
every case depicted in Fig. 4, an uniformly distributed random
noise with small amplitude, 500 to 1000 times smaller than the
amplitude of oscillations. Time runs downwards and in each
plot we show a segment of the evolution after about
t ¼ 200 000 – that is, 4� 106 integration steps – to lessen the
chances that we were seeing transient behaviour.
We shall call the periodic solution with broken symmetry

with respect both to time and space, shown in Fig. (4b), a
standing wave although in rigour it is a standing-wave pattern
superimposed on a homogeneous background oscillation.
Indeed, after removing the contribution of the homogeneous
mode by subtraction of the average

�yyCO tð Þ ¼ 1

Ncel

XNcel

i¼1

yiCO tð Þ; ð3:21Þ

where Ncel is the total number of integration cells, the pattern
still does not meet all the symmetry requirements of a ‘‘ true ’’

Fig. 3 ks as a function of yCO for DE/RT ¼ 5.0, a/RT ¼ 18.0
(dashed line). The sharper profile drawn as a solid line corresponds
to a transition at room temperature (T ¼ 300 K), assuming that the
dashed line is plotted at a temperature were spatio-temporal patterns
are observed (T ¼ 550 K).

1358 Phys. Chem. Chem. Phys., 2002, 4, 1355–1366
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standing wave. It does possess the discrete translational sym-
metries by one wavelength and one period x! x+2p/q,
t! t+2p/o, where q is the wave-vector and o the frequency,
but the combined symmetry of time translation through a half
period (t! t+p/o) and inversion u(x)!�u(x), with
u(x) ¼ y(x)� �yy, is not verified. On the other hand, the pattern
remains unchanged by a simultaneous time shift by half a per-
iod and translation by half wavelength t! t+p/o, x! x+p/
q, making it a sub-harmonic pattern with a general analytic
expression

u xð Þ ¼ AHe
2iwt þ ALe

i wtþqxð Þ þ ARe
i wt�qxð Þ þ c:c: ð3:22Þ

where the subscripts H, L and R stand for the homogeneous
mode, left- and right-going waves, respectively.
Furthermore, there are no ‘‘ real ’’ nodes where the ampli-

tude of the local oscillations actually vanishes, although
between the sharp depressions which build up in alternate
movements every half period, there are a few points that oscil-
late with very small amplitudes.
In terms of the underlying physics, the resonant pattern can

be interpreted as resulting from periodic nucleation and
growth of phase separated domains. As the system is periodi-
cally driven inside and out the thermodynamically unstable
region, there is an outbreak of phase separated domains which
subsequently synchronizes by the coupling effect of the homo-
geneous mode. Much like phase separation may become ‘‘ fro-
zen’’ in the presence of chemical reactions,31 here full phase
separation is not accomplished because domain coarsening is
alternately promoted and inhibited by the effect of the global
oscillation.

Only in a limited interval of values of yCO and k can phase
separation take place. If during one period of oscillation, the
system ’s variables only assume those values for a short while,
phase separated domains will not have enough time to develop
and the system will be kept spatially uniform. This is what hap-
pens in the case of the relaxation oscillations of Fig. 4a. Under
those conditions, the system spends most of the time outside
the two-phase region and only a very short period going across
the unstable domain. It is an insufficient period of time to
allow density fluctuations to grow to macroscopic size and
thus a stable structured pattern can never emerge. As the oscil-
lation profiles get smoother, the part of the cycle spent inside
the unstable region increases and may become comparable to
the characteristic time of phase separation, ultimately leading
to a resonant spatio-temporal pattern. This explains why
relaxation oscillations with large periods (and stiff profiles)
are uniform while standing wave patterns usually appear asso-
ciated with fast, smoother oscillations.
The above picture is consistent with theory and observations

of periodic spinodal decomposition,32 where a system is forced
periodically into the unstable region of the thermodynamic
phase diagram. Periodic spinodal decomposition is realized
by cyclic variation of the reduced temperature T/Tc , either
by means of direct temperature forcing or by imposing a pres-
sure modulation (which changes Tc). Theory predicts that an
important parameter is, in fact, the ratio of the period of the
quench to the time scale of domain growth dynamics.32 If this
ratio is� 1, the period of the quench is much too short to pro-
duce any significant effects. On the other hand, if the ratio is
too large, then phase separation proceeds without limit.
Between the two limiting cases, there is periodic enhancement
and destruction of (large) density fluctuations, which may lead
to self-sustained patterns.
A strong numerical evidence supporting the above interpre-

tation is provided by the transient regime that precedes the
establishment of a spatio-temporal pattern.27 Total synchroni-
zation of the surface happens fast, and in a couple of periods at
most no trace is left from the uniformly distributed random
noise imposed as initial condition. A spatial modulation devel-
ops then, the amplitude of which shrinks when the homoge-
neous carrier oscillation approaches its extrema, while
growing down the slope of the oscillation profile in a kind of
breathing motion. The maximum amplitude of the spatial
modulation grows steadily, period after period, yet the whole
pattern continues to oscillate in phase. At some point the
amplitude of the modulation is large enough to cause a reso-
nance with the homogeneous mode. Suddenly, the phase
coherence of the ensemble of strongly coupled oscillators is
broken as neighbouring minima start to oscillate out of phase.
Finally a standing wave with twice the wavelength of the initial
modulation is stabilized.
The period of the pattern, that is the time it takes for a struc-

ture to reproduce itself exactly, is doubled with respect to the
period of the averaged field. We are thus in presence of a 2 : 1
resonance with each cell oscillating at half the frequency of the
average. This feature is evident from Fig. 5, where in the upper
and middle boxes we plot the time evolution of two cells arbi-
trarily chosen among the 256 integration cells while the evolu-
tion of the mean coverage �yyCO , given by (3.21), is represented
in the lower box.
It is significant that we have always found a strong wave-

number selection in this system. In the simulations we were
able to produce stable standing waves of up to twelve wave-
lengths by increasing the system size. Further numerical tests
showed that the wavelength was clearly intrinsic, depending
only on the external parameters (temperature, pressures, etc.)
and the mobility M (which itself must depend on T). Certainly
it does not changed with the boundary conditions, apart from
the obvious restriction imposed by periodic boundary condi-
tions, that is, that only an integer number of wavelengths

Fig. 4 (a) Homogeneous oscillations: P1 ¼ 0.08277, P2 ¼ 0.15,
DĒ ¼ 7.0, �aa ¼ 20.0, d ¼ 0.05, and M̄ ¼ 0.0001. Spatial integration
step: dx ¼ 0.17; time step: dt ¼ 0.05. ymin

CO ’ 0.34, ymax
CO ’ 0.64. (b)

Standing waves: P1 ¼ 0.07532 , P2 ¼ 0.12, DĒ¼ 7.0, �aa ¼ 20.0,
d ¼ 0.05, and M̄ ¼ 0.0001; dx ¼ 0.17, dt ¼ 0.05. ymin

CO ’ 0.39,
ymax
CO ’ 0.59. (c) Spatio-temporal chaos: P1 ¼ 0.0735 ,P2 ¼ 0.113 ,
DĒ ¼ 6.0, �aa ¼ 19.0, d ¼ 0.05, and M̄ ¼ 0.0001; dx ¼ 0.12,
dt ¼ 0.05. ymin

CO ’ 0.36, ymax
CO ’ 0.57. No-flux boundary conditions

(BC) on a 256 cell box. Time runs downwards. See text for further
details.
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can be present. Notwithstanding, with no-flux boundary con-
ditions we found a tendency for structures with half integer
number of wavelengths to be stabilized, particularly in smaller
systems.

B. Existence diagram

Fig. 6 shows the existence diagram of the four classes of spatio-
temporal behaviour found in the simulations – namely homo-
geneous oscillations, standing waves, turbulence and station-
ary patterns. With this set of fixed energetic and kinetic
parameters (see caption), all those kinds of patterns may be
obtained simply by varying the reactants partial pressures.
We believe that the ability of the model to reproduce this sce-
nario is of great significance because in the experiments, the
CO and O2 partial pressures are the only externally tunable
parameters. Indeed, the remaining parameters being related
to the properties of the substrate and reactant species as well
as to the temperature, they are not allowed to change during
one particular experiment conducted under isothermal condi-
tions. But transitions between the three different types of spa-

tio-temporal patterns were observed under precisely the above
conditions, just by varying pCO and pO2

.2

Transitions from steady-state to oscillatory behaviour occur
discontinuously at the high PCO side, for values of the oxygen
partial pressure above PO2

� 0.04. Following a decrease in the
CO partial pressure, the oscillatory region is accessed through
a saddle-node infinite period bifurcation (SNIPER) leading to
relaxation-type homogeneous oscillations (filled circles). The
behaviour close to the bifurcation point PCO

c is not altered
by the action of the spatial terms as demonstrated by the fact
that the oscillation period diverges as T � 1/

ffiffiffi
d

p
as d! 0,27

where d measures the distance from the bifurcation point:
d ¼ |PCO�PCO

c|.
The domain of oscillatory behaviour in the absence of trans-

port terms is also represented in Fig. 6. Setting M̄ to zero in
eqn. (2.18) and integrating the resulting set of ODEs, one finds
oscillations inside a region which has the shape of an airfoil.
The oscillatory region is bounded from the left by a (dashed)
line of Hopf bifurcations which starts right at the cusp, reaches
a turning point in the lower part of the diagram – approxi-
mately at PCO� 0.0295, PO2

� 0.291 – and rises again to meet
the line of SNIPER bifurcations, thereby closing the oscilla-
tory domain. To the right of the oscillatory region, the system
assumes homogeneous steady states of high CO coverage while
to the left the surface is also uniformly covered but now with a
higher percentage of oxygen. Crossing the oscillatory region
causes a discontinuous transition between these states, labeled
in the existence diagram of Fig. 6 as ‘‘CO-covered’’ and ‘‘O-
covered’’ respectively. However, this is not meant to imply
that the surface is fully covered with either CO or oxygen.
Indeed, in the range of partial pressures where oscillations
occur yO is always small, below 0.2. The CO coverage, on
the other hand, assumes high values immediately to the right
of the SNIPER line, where the surface is close to saturation
because there the corresponding value of k is almost one (see
Fig. 3).
The pure kinetic model (i.e. without diffusion) has an oscil-

latory domain which is very similar in shape and structure to
that of the KEE model, for which a comprehensive bifurcation
analysis has been performed.14,33 This comes as no surprise
because, when diffusion is neglected, the present model and
its predecessor differ only in their respective descriptions of
surface relaxation (eqn. (2.20)). On the other hand, the shape
of the oscillatory region is controlled mainly by the bistable
properties of the reaction terms14 – that is eqns. (2.18)–(2.19)
– which practically do not change with respect to the KEE
model.
As one keeps on decreasing PCO beyond the SNIPER line,

the period of homogeneous oscillations drops fast and these
assume less stiff profiles while remaining spatially uniform.
Then transitions either to standing waves or spatio-temporal
chaos take place. Wide hysteresis loops associated with these
transitions make it impossible to draw definite boundary lines
separating the three classes of solutions, much less represent
them with clarity. Therefore in Fig. 6, only those points con-
nected by a line correspond to bifurcating solutions, obtained
following an adiabatic variation of the control parameter,
PCO , along a horizontal path of constant PO2

. On the other
hand, the crosses (+) and stars (*) represent solutions obtained
by pressure quenches into the oscillatory domain, respectively
standing-waves and spatio-temporal chaos. In every case the
initial condition is the closest homogeneous steady-state solu-
tion perturbed with an uniformly distributed random noise of
small amplitude.
In a small section of the boundary line – in the range

0.036.PO2
. 0.04 – the instability of the homogeneous steady

state generates immediately standing waves. These points are
represented by empty circles in Fig. 6. They lie close to the
point where the set of ODEs displays a codimensional-two
bifurcation (Hopf–SNIPER) point. The influence of the SNI-

Fig. 6 The domain of complex spatio-temporal behaviour in 1D.
Parameters are DĒ ¼ 5.0, �aa ¼ 18.0, d ¼ 0.03, M̄ ¼ 5.0� 10�5, and
L̄ ¼ 5.0� 10�4. The filled circles represent uniform relaxation-type
oscillations with very long periods. The crosses (+) are standing-wave
solutions (all of them 2 : 1 resonances) and the stars (*), turbulent pat-
terns. Finally the solid lines connect points where the Turing bifurca-
tion takes place.

Fig. 5 Temporal evolution of the CO coverage at two given points
on the spatial grid compared with the evolution of the average �yyCO
(lower box). Parameters are the same as in Fig. (4b).

1360 Phys. Chem. Chem. Phys., 2002, 4, 1355–1366

Pu
bl

is
he

d 
on

 1
9 

M
ar

ch
 2

00
2.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ite

it 
U

tr
ec

ht
 o

n 
23

/1
0/

20
14

 0
3:

04
:2

5.
 

View Article Online

http://dx.doi.org/10.1039/b109389b


PER bifurcation is apparent from the fact that the oscillations
on the average �yyCO , at twice the frequency of a given point,
retain their relaxational character.
By increasing PCO the instability region can be entered from

the left side. In this case two situations may occur. Provided
PO2

is high enough, the first bifurcation is a soft mode Hopf
bifurcation leading to small amplitude homogeneous oscilla-
tions. Their amplitude grows steadily as the distance from
the threshold increases until beyond a second threshold, the
uniform oscillations become unstable leading to a standing
wave pattern whose period is twice that of the original uniform
oscillations.
A different (and complementary) scenario is observed at

lower PO2
values. There, once the bifurcation line is crossed,

the oscillations present a smooth spatial modulation. In this
case, the period of the spatio-temporal structure is the same
as that of the homogeneous mode. The resulting space–time
plot, represented in Fig. 7a, reveals a 1 : 1 resonance. This
solution is only stable in a narrow parameter range, being
replaced by the 2 : 1 subharmonic pattern of Fig. 7b upon a
further (small) increase in the bifurcation parameter, PCO .
A third scenario for the onset of standing waves is found in

the lowermost part of the diagram when entering the instabil-
ity region by either side. In both cases one encounters first a
bifurcation breaking the symmetry in space only. The ampli-
tude of these steady-state structures grows with increasing dis-
tance from each threshold, and when this distance is further
increased, a standing-wave pattern develops whose spatial per-
iod is doubled with respect to the stationary structure. If the
variation of the control parameter proceeds in really small
steps (adiabatically), a 1 : 1 resonance is stabilized in between,
though again it only remains stable through a very narrow
parameter range. This mixed-mode state, typical of the interac-
tion between a Turing and Hopf bifurcation,34 is identical to
that shown in Fig. 7a. Also, the 2 : 1 resonant patterns are
qualitatively indistinguishable whether they emerge following
the instability of the homogeneous Hopf mode, through a spa-
tial subharmonic instability, or bifurcate from the 1 : 1 spatio-
temporal structure.

On the transition to spatio-temporal chaos, the standing
wave pattern undergoes a modulational instability which,
upon further increase of the control parameter, leads to a state
characterized by the proliferation of spatio-temporal defects.
On the approach to the SNIPER line, moving away from the
Hopf bifurcation line through an increase in PCO , the transi-
tion to turbulent patterns probably occurs by a generic
mechanism proposed recently by Argentina et al.,35 the funda-
mental idea being that a spatially homogeneous, though
anharmonic, limit cycle may act as a parametric forcing on
itself. Using a very simple model, they have shown that such
limit cycle is generically unstable with respect to inhomoge-
neous perturbations on the approach to a homoclinic bifurca-
tion. The instability leading to spatio-temporal chaos is either
period-doubling, with a finite wavenumber, or a phase instabil-
ity. This behaviour, which we have termed self-resonance and
they call self-parametric forcing, is more likely to take place
near the apex of the bifurcation diagram because it is there that
the homoclinic limit cycle closes on the Hopf bifurcation.
The model also predicts stationary structures (Turing pat-

terns) in a strip that is the continuation of the oscillatory
region to lower partial pressures. This region, of which only
a small part is shown in Fig. 6, is even larger than the oscilla-
tory domain. Although the predicted structures are character-
ized by small amplitudes – with spatial variations in oxygen
coverage smaller than 0.1 and in yCO of less than 0.3 – it should
be possible to observe them by the imaging techniques used to
monitor spatio-temporal patterns, including PEEM (see
below). The formation of Turing patterns in the CO oxidation
on Pt(110) has been suggested (namely in ref. 2) but never
clearly established experimentally. We hope that forthcoming
experimental work will address this important issue.

VI. Spatio-temporal patterns on the catalytic
surface

The majority of experimental images of the Pt(110) surface
showing spatio-temporal patterns during CO oxidation were
obtained with the photoemission electron microscope (PEEM).
The presence of adsorbate molecules alters the work function
of the substrate to a different measure depending on the
adsorbed species and the particular surface phase on which
adsorption is taking place. The PEEM essentially probes the
local values assumed by the work function, with a typical spa-
tial resolution of �1 mm. By significantly increasing the work
function, the presence of adsorbed oxygen reduces the photo-
emission of electrons, while in regions predominantly covered
by CO, the electron yield is only weakly decreased. Therefore,
regions where oxygen coverage is high appear dark in the
PEEM images, whereas those covered mostly by CO are
bright. The PEEM is very sensitive to variations in oxygen cov-
erage: it is expected to detect variations in yO as low as 0.5%.
In the presentation of two-dimensional results that follows

we shall adopt the same convention. Snapshots of the oxygen
coverage field, yO(r), are displayed in a 256 step grey scale,
where white corresponds to minimum oxygen coverage and
black to the maximum value of yO(r). Since yCO(r) and yO(r)
are strictly anti-correlated in time, the CO coverage field at a
given instant is practically the negative image of the oxygen
coverage pattern at the same moment. The pattern of recon-
structed and unreconstructed regions, i.e. the spatial modula-
tion of the variable k, strictly follows the the distribution of
CO on the surface and therefore the reconstruction patterns
are out of phase of p with the oxygen coverage patterns. Note
that a linear relation between brightness and coverage is impli-
cit, although some observations suggest that it may be non-
linear36 or that, being (piecewise) linear, show crossover
behaviour between two different slopes from low to moderate
oxygen coverages.30

Fig. 7 Spatio-temporal charts showing 1 : 1 and 2 : 1 resonances as
the control parameter PCO is varied at fixed PO2

¼ 0.06, DĒ ¼ 5.0,
�aa ¼ 18.0, d ¼ 0.03, M̄ ¼ 0.00005, dx ¼ 0.08 and dt ¼ 0.05. (a) a
1 : 1 resonance at PCO ¼ 0.0413: ymin

CO ’ 0.19, ymax
CO ’ 0.36. (b) 2 : 1 pat-

tern at PCO ¼ 0.04135: ymin
CO ’ 0.17, ymax

CO ’ 0.576. The integration time,
t ¼ 20 000, number of cells (256) and BC (periodic) are the same for
both charts. Time runs downwards.
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A. Subharmonic standing-wave patterns: oscillating squares
and rhombs

We performed extensive numerical simulations of the model
equations (2.18)–(2.20) in two dimensions. These have revealed
the same four classes of spatio-temporal dynamics found in the
one-dimensional simulations, namely homogeneous relaxa-
tion-type oscillations, standing wave patterns, chemical turbu-
lence as well as stationary structures. There is no substantial
difference in the nature of spatially uniform periodic solutions
with respect to the one-dimensional case; the whole surface
simply oscillates monotonously in phase. As in 1D, homoge-
neous oscillations can be found mainly near the SNIPER
boundary, that is on the high PCO side and at moderate to high
values of PO2

(relatively to the existence range of oscillations).
What must be stressed here is that, when the dynamics of the
SPT is considered, spatial coupling alone is sufficiently strong
to allow homogeneous oscillations to occur in 2D with all cells
oscillating with the same frequency and in phase.
The frame sequence displayed in Fig. 8 shows a subharmo-

nic standing-wave pattern with square symmetry. To avoid
redundancy, we have only represented there the evolution dur-
ing half a period. Notice that in the last frame the points where
the oxygen coverage is lower – the bright regions – are dis-
placed by one-half wavelength in the vertical and horizontal
directions with respect to the first frame. The second half-per-
iod merely repeats the sequence shown in Fig. 8 only at shifted
locations as mentioned before, until the pattern in the first
frame is recovered.
On the other hand, we can distinguish in Fig. 8 a slow mod-

ulation of the oscillation amplitude reflected in a smooth undu-
lation in the brightness of the patterns. This effect is also seen
in experimental videos.2,3 In the simulations, when the stand-
ing-wave structure first emerges from homogeneous oscilla-
tions it is perfectly phase coherent and remains so for a long
time, up to several dozens or even hundreds of periods. But
even in the most stable cases it is likely that as time progresses
an amplitude modulation will eventually develop. In the case
of Fig. 8 the magnitude of the modulation has already satu-
rated.
Up to this point we have considered an isotropic system.

However, as can be seen in the ball model of Fig. 1, the
Pt(110) surface is markedly anisotropic either in its recon-
structed missing-row form as well as in the bulk-like termina-
tion state. Thus, CO diffusion is expected to proceed
considerably faster along the troughs in the [11̄0] direction

than in the perpendicular, ‘‘ cross-row’’ [001] direction. More-
over, in view of the larger channels of the reconstructed sur-
face, one should expect faster diffusion along the [11̄0]
direction on the 1� 2 than on the 1� 1 phase. As mentioned
before, CO diffusion measurements are extremely hard to per-
form and the results have a difficult interpretation because of
the CO-induced lifting of the reconstruction. On the other
hand, only for low temperatures (T < 300 K), does the phase
transition proceed sufficiently slow for diffusion to occur on
either surface structure. In that range, experiments have
reported a difference between the diffusion coefficients of CO
on the two surface structures,30 with diffusion on the 1� 1 sur-
face being slower. However, these findings cannot be straight-
forwardly extrapolated to the temperatures at which spatio-
temporal patterns are observed because there the CO-induced
SPT is fast enough so that both processes interfere.
In spite of these and other shortcomings that confound the

interpretation of experimental results, the anisotropy of CO
diffusion on both surface phases has been clearly estab-
lished.30,36 Here we shall consider diffusion anisotropy in the
most straightforward way: we simply put M̄y ¼ rM̄x , where
M̄x and M̄y are the (reduced) mobilities of adsorbed CO in
the x and y direction respectively. This means we are neglecting
the structural dependence of anisotropic transport in the
adlayer. To maintain consistency we also scale the phenomen-
ological characteristic length as x0y ¼ ffiffiffi

r
p

x0x . Using a value of
r > 1 we were able to reproduce a standing-wave structure
where the maxima and minima of oxygen coverage form a pat-
tern with a symmetry of rhombs. The evolution of such a pat-
tern, with r ¼ 4, is shown in Fig. 9. Like in the experimental
images, the rhomb ’s longer axis is in the [11̄0] direction –
the vertical (y) direction in the simulations.
The simulations (Fig. 9) reveal regular rhomb-shaped pat-

terns that do not present any topological defects, such as dis-
locations and disclinations. In contrast, the experimentally
observed patterns appear distorted,2 maybe due to the pre-
sence of surface defects – perhaps terrace ledges – which would
introduce an element of disorder in an otherwise well orga-
nized structure. These microscopic effects are outside the scope
of our model which so far describes only a perfect surface. On
the other hand, the experimental images of rhomb-shaped
standing waves display a markedly higher contrast with well
defined oxygen ‘‘droplets ’’ emerging from a predominantly
CO-covered background (bright).2 As we see in Figs. 8 and
9, the model equations yield rather standing-wave patterns
which are smooth modulations of the coverage fields yO and
yCO , and do not display sharp boundaries between domains
of each adsorbed species. In this vein, the standing-wave pat-
terns of Figs. 8 and 9 are representative of that particular
regime which in the context of phase ordering dynamics is
called the weak segregation regime. The terminology is appro-
priate because, as stressed before, it is indeed the surface phase
transition that is behind the segregation of the adsorbate spe-
cies on the surface and furthermore, analogous time-indepen-
dent structures appear in frozen phase separation.31 In an
identical sense, the experimental patterns are then examples
of strong segregation. In 1D simulations we were able to repro-

Fig. 9 Evolution of a standing-wave pattern with a symmetry of
rhombs. Parameter values are PCO ¼ 0.0811, PO2 ¼ 0.14, DĒ ¼ 5.0,
�aa ¼ 18.0, d ¼ 0.05, and M̄ ¼ 5.0� 10�5. Time lag between consecutive
images is t ¼ 300, 50 and 250 respectively. A strong long-wavelength
modulation is apparent.

Fig. 8 Evolution of a square standing-wave pattern during half a
period. Parameter values are PCO ¼ 0.0728, PO2

¼ 0.11, DĒ ¼ 5.0,
�aa ¼ 18.0, d ¼ 0.05, and M̄ ¼ 5.0� 10�5. From left to right, top to bot-
tom, the time between two consecutive images is respectively t ¼ 200,
120, 100, 140, and 220. Periodic BC. The grey scale was calibrated over
one oscillation period, so that white corresponds to the absolute mini-
mum and black to the absolute maximum assumed by the variable yO
among the 128� 128 cells.
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duce both the weak and the strong segregation regimes by
varying the value of d. Lower d corresponds to lower CO des-
orption – thus lower T – and results in more stiff spatial pro-
files. (Compare Figs. 4b and 7b and remark that the latter is
‘‘painted’’ in black and white while the former displays gra-
dual changes between shades of grey.) However, in two-dimen-
sions we could not do the same without provoking a symmetry
modification, as we discuss below.

B. Subharmonic standing-wave patterns: stripes

In our simulations, standing-wave patterns with sharp inter-
faces occur when CO desorption takes place at a lower rate.
The image sequence of Fig. 10 was obtained at d ¼ 0.03 (the
same value we used to put together the existence diagram in
Fig. 6). The energetic parameters are those leading to squares
(rhombs) in Fig. 8 (9). Altering these parameters – which must
be changed in synchrony so that oscillations persist – had only
little impact on the symmetry of the solutions; stripe patterns
are quite robust with respect to these changes. The value of
d, on the other hand, proved determinant for the onset of
one or the other structure. Moreover, when d is lowered, M̄
has to be decreased also in order that spatio-temporal patterns
are still obtained. This reinforces the idea that oscillating
stripes should be the asymptotic solution at lower tempera-
tures. The stripes were perfectly regular and no low frequency
modulation similar to that encountered in the case of rhombs
was observed. This contrasts with experimental stripes that dis-
play irregularities in the form of undulations and dynamic dis-
locations.3

A feature which compares well to experiment3,18 is the fact
that the beginning of an half-cycle is marked by the emergence
of a dark O-rich front that splits the CO-covered band in two
creating a pair of stripes which move apart. These stripes then
collide and merge one wavelength away, only to be separated
again later by a new splitting front growing from within, so
that the initial pattern is repeated. During a small part of the
half-cycle, a thin strip of oxygen is still visible in the middle
of the areas of high CO coverage – particularly in the fourth
frame in the sequence of Fig. 10. The reciprocal case, where
a bright CO front bursts from the middle of a dark O-rich
band was also observed but now in the high PO2

region of
the existence diagram (see Fig. 6), namely at PCO ¼ 0.0385,
PO2

¼ 0.052. This indicates that the splitting front is that of
the minority phase.
Note that Fig. 10 represents the evolution of an isotropic

system, which clearly shows that the stripe pattern (like the
square pattern before) is indeed a broken symmetry solution
of the original set of pdes (eqns. (2.18)–(2.20)) and not in

any way the result of anisotropic transport. If we introduce
surface anisotropy in the rather simple way we did in the last
section, the stripes tend to line up with the direction of fast
transport. However, even an unrealistically high value of the
anisotropy parameter r is insufficient to align stripes along
the [11̄0] direction. We are therefore led to the conclusion that
a more sophisticated treatment of surface anisotropy is neces-
sary, not only to explain this particular experimental fact, but
to access the full implications of anisotropic effects on the sym-
metry of patterns.

C. Turbulent patterns

Images of turbulent spatio-temporal patterns obtained in
simulations are shown in Fig. 11, where we see stripe frag-
ments with poor spatio-temporal coherence among small irre-
gular patches. The two snapshots were taken at an interval of
Dt ¼ 720, which in the temperature range in which turbulent
behaviour has been reported2 (T� 540 K) corresponds to
about 2 s. Note that during that short period of time the struc-
ture has evolved considerably, with large regions that were pre-
dominantly bright in the first image appearing dark in the
second. The short time scale associated with the turbulent
regime in the simulations matches the observed characteristic
time of evolution. In spite of the broad similarities, a closer
inspection of the simulated patterns shows that they are more
structured than experimental ones.
Associated with turbulent patterns are oscillations on the

local surface coverage which are highly irregular and of large
amplitude. Oscillations in the averaged coverages and in the
average ratio of the 1� 1 phase, k̄, are also chaotic but with
a much smaller amplitude, which at its highest value is only
about 10% of the maximum amplitude of the local oscillations.

D. Target patterns

At lower temperatures, around 430 K, simultaneously with
oscillations in the reaction rate, the surface exhibits target pat-
terns, that is concentric waves emanating periodically from a
nucleation centre.2,3,37–39 The wave fronts are elliptically
shaped, with the longer axis along the [11̄0] direction, while
the shorter axis coincides with the [001] orientation of the
Pt(110) surface. The regions between the concentric waves
switch periodically from dark to bright. Likewise, the bright-
ness of the fronts is also reversed but in opposite sense with
respect to the bulk. Each time the surface undergoes a bulk
oscillation, the outermost wave of the targets is annihilated.
Nevertheless, the target as a whole still grows, since the subse-
quent waves arise beyond the zone were the last annihilation
took place. The switching of the background intensity over
the entire surface area occurs quite rapidly, in less than one
fifth of the global oscillation period, approximatively. This fea-

Fig. 11 Simulated turbulent patterns at PCO ¼ 0.047, PO2
¼ 0.072,

DĒ ¼ 5.0, �aa ¼ 18.0, d ¼ 0.03, and M̄ ¼ 2.5� 10�5. The two snapshots
were taken after a transient of t ¼ 250 000. The value of the aniso-
tropy parameter is r ¼ 4 and the interval between the two images is
Dt ¼ 720; yO

min’ 0.01, yO
max’ 0.28.

Fig. 10 Evolution during half a period of a standing-wave pattern
with stripe symmetry. Parameter values are PCO ¼ 0.0353,
PO2

¼ 0.037, DĒ ¼ 5.0, �aa ¼ 18.0, d ¼ 0.03, and M̄ ¼ 2.5� 10�5.
From left to right, top to bottom, the time lag between two consecutive
images is respectively t ¼ 100, 200, 200, 300 and 400. Periodic BC.
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ture is consistent with the relaxation-type oscillations observed
in the integral reaction rate.
As in most oscillating chemical systems displaying target

patterns, the precise nature of the pacemaking centres is still
unclear. However, it is commonly accepted that these are
due to some kind of surface imperfection, an assertion sup-
ported by observations that the target patterns will reappear
at the same spots when the experiments are repeated. Most
likely, the nucleation region from where the wave fronts peri-
odically emanate consists of patches of enhanced step density
or enhanced concentration of impurity atoms, but the possibi-
lity that some other type of surface imperfection may trigger
surface waves cannot be excluded.
Nucleation of reaction fronts at defects is a complex dyna-

mical process, the details of which are not yet understood.
For example, both the geometrical form of the defect as well
as its inner heterogeneities can be decisive factors in the nuclea-
tion process.39 The mean field approach is, of course, unsuited
to deal with these microscopic details. Thus, we shall look
upon target formation on a coarser spatial scale, considering
the pacemaking centres as regions of higher concentration of
defects, on the average.
The best guess as to the role of surface defects in this process

is that they lead to a noticeable increase in the local oxygen
sticking coefficient and hence to improved reactivity. Oxygen
adsorbs preferentially along step edges,13 a fact that is behind
the higher oxygen sticking coefficient observed in the chan-
neled 1� 2 surface, as mentioned before. Presumably, this is
due to the fact that oxygen adsorption is dissociative. In this
vein, defects should not affect CO adsorption, matching exist-
ing data which show no noticeable variation in the CO sticking
coefficient between the 1� 1 and 1� 2 surfaces.
To the above hypothesis we have added the assumption that

the oxygen sticking coefficient is increased in the same propor-
tion irrespectively of the state of the surface, that is as much in
the 1� 1 as in the 1� 2 phase. This is a strong assumption,
most certainly not verified when the majority of defects present
are dislocations or vacancies which may relax together with
surface structure. Notwithstanding, it is expected to be valid
when the defect region consists rather of patches of enhanced
step density or higher concentration of impurity atoms. With
the former assumption, an increase in the local oxygen sticking
coefficient is strictly equivalent to an increase in the local value
of the adimensional pressure PO2

. Thus we set in the defect
region

Pdef
O2

¼ PO2
1þ sð Þ; ð4:23Þ

where PO2
is the reduced oxygen pressure elsewhere on the sur-

face and s is a positive parameter measuring the increase in
sticking probability (s ¼ 0 corresponds to the defect-free
situation).
In the parameter range of our simulations, target patterns

exist only in a small domain of the reactants partial pressures.
On every occasion we found a threshold for s below which no
waves are produced in agreement with prevailing theories,40

but this threshold value was always small. The ellipticity of
the patterns follows directly from our uninvolved approach
to surface anisotropy; the anisotropy ratio r was chosen so
that the aspect ratio of the simulated patterns approximatively
matches the observed eccentricity.
It must be noted that in our simulations target patterns were

found mainly associated with quasi-harmonic oscillation pro-
files while experimentally observed targets consist of trigger
waves associated with relaxation-type oscillations in the inte-
gral reaction rate. But, exceptionally, we have also found tar-
gets made up of propagating wave fronts with sharp
boundaries like the one shown in Fig. 12a, associated with stiff
oscillation profiles displayed by the reaction rate in the bulk.
The switching of the background intensity is then considerably

fast (Fig. 12b). Target patterns which look remarkably similar
to that of Fig. 12a were reported in ref. 37.

E. Spiral waves in an oscillatory background

In addition to target patterns, experiments revealed spiral
waves in a large temperature range2,3,37,39,41 both under oscil-
latory as well as excitable conditions. Like target patterns, the
observed spirals are elliptically deformed. Unlike the former,
for fixed external parameters the spirals exhibited a continuous
distribution of wavelengths and periods. This is understood by
the fact that most spirals are pinned to surface defects of mark-
edly distinct shapes and sizes. Frequently one observes a num-
ber of freely rotating, meandering spirals39,41 but most of the
spirals in this system have their cores fixed to structural
defects.
Notwithstanding, for the formation of spirals no heteroge-

neity at the centre is needed; only a certain topological condi-
tion must be satisfied by the initial concentration distribution,
as offered, most simply, by the broken end of a wave front.40

With such an initial condition we obtained the pattern shown
in Fig. 13. Under the same set of parameters, if the initial con-
dition was completely random, the system would exhibit
homogeneous relaxation-type oscillations. Just like it hap-
pened with target wave fronts, the spiral arms alternate in
brightness always in opposition to the bulk and the front
mimics the profile displayed by uniform oscillations in the
absence of the defect. Note that both the revolution period
and the wavelength are intrinsic properties; they depend not

Fig. 12 (a) Target pattern consisting of sharply defined wave fronts.
(b) Relaxation-type oscillation in the rate of CO2 production asso-
ciated with the pattern on the left. Parameter values are the following:
PCO ¼ 0.09282, PO2

¼ 0.2, DĒ ¼ 8.0, �aa ¼ 21.0, d ¼ 0.05,
M̄ ¼ 5.0� 10�5 s ¼ 0.05, r ¼ 4.0, dx ¼ 0.5, and dt ¼ 0.2.
yO

min’ 0.04, yO
max’ 0.23.

Fig. 13 Elliptic spiral wave on an oscillating background. The para-
meter values are PCO ¼ 0.0775, PO2

¼ 0.13, DĒ ¼ 7.0, �aa ¼ 20.0,
d ¼ 0.05, M̄ ¼ 5.0� 10�5, r ¼ 4.0, dx ¼ 0.2, dt ¼ 0.2. yO

min’ 0.04,
yO

max’ 0.17. The broken wavefront is initially 128 cells wide, which
is one half the linear size of the integration grid.
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on initial conditions, only on the dispersion relation of the
medium. As we can see, the selected wavelength in Fig. 13 is
much shorter than the front which generates it. On the other
hand, the elliptical shape of the spiral again reflects the aniso-
tropy of the Pt(110) surface.
We remark that most of the spirals reported in experiments

occurred in situations where the system did not oscillate but
behaved instead as an excitable medium. The evolution of spir-
als under bistable and excitable conditions has been treated
elsewhere by a FitzHugh–Nagumo-type model, modified to
meet the specific properties of the SPT.4,42,43

V. Discussion

The occurrence of complex spatio-temporal behaviour in the
CO+O2 reaction on Pt(110) has been usually attributed to
the effect of gas-phase coupling.1–3,6,9,17,19 Feedback through
the gas-phase is thought to occur via small modulations in
the CO partial pressure inside the reaction chamber, which
are correlated with variations in the total amount of CO
adsorbed on the surface and in the rate of CO2 desorption.
Due to the very low pressures and high molecular speeds,
the mean free path is larger than the dimension of the vacuum
chamber (thus much larger than the size of the sample). There-
fore, any pressure variations in the gas-phase equilibrate
instantaneously when compared to the relevant time scale of
the system, that is, one oscillation period. Sidewise, it was reck-
oned that spatial coupling alone could never lead to coherent
behaviour of the whole surface under oscillatory conditions.
In the effort to access the role of global coupling (GC) in the

CO oxidation on Pt(110) several studies were undertaken. In
early simulations of cellular automata,9 rather unrealistic pres-
sure variations had to be applied (�25% of pCO , while in
experiments these modulations are only about 1� 3 %) to rea-
lize complete synchronization over the surface, that is, to pro-
duce homogeneous oscillations. Subsequent studies17 relied on
the KEE model, supplemented with an equation governing the
variations of pCO as a function of the integral CO coverage,
�yyCO . Spatial coupling was accounted for by adding a simple
Fickian term to the equation governing the amount of
adsorbed CO. In numerical simulations of this model, one-
dimensional profiles that do resemble standing waves were
obtained. However, their wavelength was generally not intrin-
sic, depending on the initial conditions, except in a narrow
parameter range. Even so, it is not clear that these standing
waves indeed arose because of global coupling since the very
same model, but without GC, produced standing-waves with
similar characteristics in the close vicinity of the codimen-
sional-two bifurcation Hopf–SNIPER point.15 Also, in both
cases the patterns differ from the standing-wave patterns
observed so far in the CO oxidation on Pt(110) in one essential
feature: the subharmonic character of the experimentally
observed patterns is not reproduced by the KEE model with
global coupling which displays instead a 1 : 1 resonance with
the global oscillation.
In view of these far from encouraging results, further inves-

tigation was based almost exclusively on the Complex Ginz-
burg–Landau Equation (CGLE), modified to include GC.
Underlying this approach is the notion that structured beha-
viour originates solely from the effect of GC on an oscillatory
medium that exhibits the Benjamin–Feir instability, irrespec-
tively of the details of the physical system. Of course, such uni-
versal behaviour is only ensured in the neighbourhood of a
bifurcation point. In this sense, the normal form approach
has a limited scope, being valid close to the line of Hopf bifur-
cations only. Thus it cannot, for example, account for the
relaxation-type oscillations associated with spatio-temporal
patterns in the CO+O2 reaction on Pt(110).

A consistent trend observed in all models relying on GC,
either the CGLE or ‘‘ realistic ’’ models, is that when the
strength of the coupling is decreased, amplitude modulations
appear, until below a certain threshold value, spatio-temporal
chaos sets in. This phenomenon, that has been called the
breakdown of global coupling, is though to characterize gener-
ically the transition from regular oscillations to aperiodic
behaviour. In this vein, the standing-wave patterns would
result from a rather delicate balance between local coupling
via surface diffusion and global coupling through the gas
phase.
For strong enough global coupling, uniform oscillations

were obtained in simulations of the CGLE both in one and
two dimensions. If the intensity of the coupling is decreased
below a certain value, the homogeneous solution becomes
unstable with respect to a structured spatio-temporal pattern.
Like in our own model, the coherent solution of the CGLE
is a superposition of a pure standing wave and a spatially
uniform oscillation but displays hexagonal symmetry19 and a
1 : 1 resonance, contrary to experimental patterns.
It is indisputable that the measured variations in the CO and

O2 partial pressures, despite their small amplitude, do indicate
that something on a global scale is happening inside the react-
ing chamber. Knowing that periodic external forcing can lead
to the stabilization of standing waves with respect to other
competing spatio-temporal patterns, it would not be surprising
if here the standing-wave pattern resulted from that particular
kind of self-parametric entrainement.
In a recent publication,18 von Oertzen et al. went back to a

‘‘ realistic ’’ model formulation with GC. They succeeded in
producing standing waves in a five equation variant of the
KEE model with Fickian diffusion where, in addition to gas-
phase coupling, the influence of subsurface oxygen formation
intervenes. Their simulations have shown that a periodic exter-
nal forcing could stabilize a standing-wave pattern. However,
they also found that an extended pattern of standing waves
never emerged from random initial conditions under the action
of intrinsic forcing. Moreover, a pre-existing standing-wave
pattern would be destroyed by global coupling.
In that model, standing waves only persist when an uni-

formly oscillating region is taken as the source of global for-
cing but, clearly, that situation is indistinguishable from
strictly external forcing. Thus, the simulations of ref. 18 do
not constitute a decisive proof that global coupling is indeed
the symmetry-breaking agent. Of course, the ability of gas-
phase coupling to synchronize spatio-temporal patterns arising
in different parts of the surface is not compromised.
Whether gas-phase coupling is the profound cause or simply

the consequence of spatio-temporal pattern formation in the
CO oxidation on Pt(110) is a matter that has been intensely
debated in the wake of Monte Carlo simulations20,44 per-
formed over the last few years. Kortlüke and co-workers20

have questioned the whole idea of global coupling and pro-
posed instead that nucleation phenomena as the underlying
reason for globally synchronized oscillations. Their Monte
Carlo simulations have failed to reproduce synchronized beha-
viour when global coupling was taken into account but nuclea-
tion processes were neglected. Dense adsorbate islands, with a
characteristic length scale much larger than the lattice side
length, formed during one oscillation period. This lead to the
conclusion that homogeneous nucleation phenomena are of
paramount importance. Furthermore, domain growth in those
cases was strongly reminiscent of the dynamics of phase transi-
tions with non-conserved order parameter, a feature which has
been explicitly taken into account in our macroscopic model.
Monte Carlo simulations of the CO+O2/Pt(100) and

NO+H2/Pt(100) reaction systems were also carried out
recently by Zhdanov.44 Although concerned with Pt(100),
these studies essentially confirmed the general picture, namely
that to achieve synchronization on a global scale it is unneces-
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sary to have gas phase coupling once the coupling between
adsorbate transport and the surface phase transition is
accounted for.
The results of our macroscopic modelling back up the con-

clusions of the microscopic studies. However, it is also clear
that gas-phase coupling may somehow affect the character of
spatio-temporal patterns in the CO+O2/Pt(110) system. Thus
we believe that in order to access the impact of GC, the model
should be extended to explicitly include gas-phase coupling.
This can be straightfowardly done, by adding a fourth equa-
tion accounting for the variation of partial pressure in
response to variations in the mean CO surface coverage. Here,
the motivation is rather to find out if gas-phase coupling
remains strong enough to disturb the stable spatio-temporal
patterns that already exist in its absence. It is our opinion that
this is indeed the relevant question, all the more since the onset
of standing waves, and particularly turbulence, is accompanied
by a fall-off in the oscillation amplitudes, necessarily leading to
a decline in the efficiency of global coupling.

VI. Conclusion

The precise role as to the effect of global coupling in the CO
oxidation on Pt(110) is still an open question. Contrary to
the prevailing thought, we have shown that a model without
global coupling gives a better description of the spatio-tem-
poral patterns than models relying on global coupling have
so far achieved.
From our point of view, what was missing in a previous

attempt15 and determined its failure, was a comprehensive
treatment of mass transport in the presence of the surface
phase transition. Merely adding a Fickian diffusion term
H2yCO to the kinetic equations gives a poor description of mass
transport in this system, because it disregards the interference
between surface diffusion and the structural relaxation of the
substrate. By including this effect in our model, that is by
allowing the topmost layer to participate in the transport of
adsorbed CO, we have made spatial coupling much stronger.
Sufficiently strong indeed to achieve complete synchronization
over the surface (homogeneous oscillations) while promoting
spatial symmetry breaking under slightly different conditions.
The standing-wave patterns that result have an intrinsic wave-
length. They are in good qualitative agreement with the experi-
mentally observed standing waves – both in terms of symmetry
as well as in their subharmonic character – and even fine
details of the oscillating stripe patterns are reproduced.
Our approach may be extended to other catalytic systems

displaying spatio-temporal patterns and oscillations such as
CO+O2/Pt(100), CO+NO/Pt(100) and NO+H2/Rh(110),
or adapted to other situations – like, for instance, electrocata-
lysis45 – where a phase transition and chemical reactions con-
cur to the formation of nonequilibrium patterns.
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