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Diffusive instabilities provide the engine for an ever increasing number of dissipative struc-
tures. In this class autocatalytic chemical systems are prone to generate temporal and spatial
self-organization phenomena. The development of open spatial reactors and the subsequent
discovery in 1989 of the stationary reaction–diffusion patterns predicted by Turing [1952] have
triggered a large amount of research. This review aims at a comparison between theoretical
predictions and experimental results obtained with various type of reactors in use. The dif-
ferences arising from the use of reactions exhibiting either bistability of homogeneous steady
states or a single one in a CSTR are emphasized.
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1. Introduction

Pattern formation far from thermodynamic equi-
librium, i.e. the generation of dissipative structures
[Glansdorff & Prigogine, 1971; Nicolis & Prigogine,
1977], now encompasses an impressive corpus of
data in an ever increasing diversity of fields. These
structures, sustained by a permanent throughput
of mass or energy, are characterized by the tem-
poral and/or spatial modulation of their proper-
ties (temperature, concentrations, velocity, stress,
electric fields, . . .). Our understanding of spatial
patterns has now progressed far beyond the prop-
erties of the paradigmatic Bénard convection cell
structures [Cross & Hohenberg, 1993]. Among the
scores of such self-organizing systems, a specific
class of problems is generated by diffusive insta-

bilities as proposed by Turing [1952] in chemi-
cal reaction–diffusion systems. This spontaneous
instability of an homogeneous mixture of chemi-
cally reacting species, when some parameter thresh-
old is crossed, leads to stationary, space-periodic
patterns of the concentrations of reactants. To
support such symmetry breaking instability, the
chemical kinetics has to involve some type of posi-
tive feedback loop controlled by an activator species
that reinforces its own changes, the latter being
counterbalanced by an inhibitory process. Spatial
structures can form when the inhibitory effects are
transported by diffusion over a larger space range
than that of the activatory mechanism. This al-
lows for the local growth of the activator while
the lateral inhibition prevents the spreading of the
activation centre. When such process competition
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repeats itself, it finally leads to a stationary pe-
riodic pattern, the wavelength of which is solely
a function of the values of the diffusion coef-
ficients and of the kinetic parameters, and not
of some geometrical length characteristic of the
experimental device being used. Although our dis-
cussion will focus on such chemical systems, diffu-
sive instabilities remain pertinent to the formation
of structures in many other fields such as electron-
hole plasmas in semiconductors [Kerner & Osipov,
1994], gas discharge devices [Willebrand et al., 1992;
Radehaus, 1992], semiconductor structures (p-n
junctions, p-i-n diodes) [Schöll, 1987; Niedernos-
theide, 1992], heterogeneous catalysis [Falta et al.,
1990], electrochemistry [Li et al., 2001], nonlinear
optics [Lugiato et al., 1998; Arecchi et al., 1999],
materials irradiated with energetic particles or light
[Krishan, 1980; Emelyanov, 1992; Walgraef, 1996].
The description of all these systems can indeed for-
mally be cast in the common language of reaction–
diffusion systems governed by the following set of
equations:

∂c(r, t)

∂t
= f(c, b) +D∇2c(r, t) , (1)

where c(r, t) is the local concentration vector,
f(c, b) is a vector function representing the reaction
kinetics, b stands for a set of control parameters and
D is the matrix of constant diffusive transport co-
efficients. Appropriate initial and boundary condi-
tions, in relation with the experiments, should also
be added to complete the mathematical formula-
tion. In some situations, Eq. (1) should be extended
to include integral conditions on the variables or
advective terms if flow is present (see conclusions).
A Turing pattern forming instability occurs when
perturbations of given wave numbers applied to the
homogeneous steady state (HSS) of reference are
able to grow spontaneously. The threshold condi-
tions are usually obtained through a linear stabil-
ity analysis of this HSS which also determines the
order of magnitude of the characteristic wave num-
ber of the emerging structure. Theoretical work
relies heavily on the use of nonlinear kinetic mod-
els for f(c, b) with a limited number of chemical
species, typically two or three. These models stand
as a compromise between a minimum of chemical
realism and mathematical tractability as the ex-
perimental schemes usually involve a large amount
of species, often not yet unequivocally determined.
Pattern selection, using the paraphernalia of bifur-
cation theoretical methods [Manneville, 1990; Cross

& Hohenberg, 1993; Nicolis, 1995], leads to the
construction of bifurcation diagrams through the
derivation and analysis of so-called amplitude equa-
tions for the active spatial (Fourier) modes. These
modes are responsible for the loss of stability of
the reference HSS state by growing exponentially.
They do so by drawing on the imposed driving force
and end up competing nonlinearly to create new
stable modulated solutions. The number of such
modes increases as one moves further beyond the
instability point. In systems the size of which is
large with respect to the characteristic wavelength,
a large multiplicity of solutions becomes possible.
The outcome of analytical work allows to determine
which structures with given symmetry are stable
for definite conditions (bifurcation diagram). It also
helps to organize the results obtained by straightfor-
ward numerical integration of the reaction–diffusion
equations. Both informations may finally be used
to interpret the experimental results.

The experimental work takes place in so-called
open spatial reactors, described further on, that are
specifically designed to control the reaction and the
structures that eventually develop at a fixed dis-
tance from equilibrium and allow to probe the true
asymptotic states of the reaction–diffusion systems.
To this effect, they are constructed to avoid all
perturbations induced by the hydrodynamic flows
associated with the constant supply of fresh reac-
tants. They must also enable the necessary diffusion
differential between activator and inhibitor species
to permit Turing and other spatial instabilities to
occur. The systems we discuss are also prone to
exhibit various homogeneous bifurcations, either
to time oscillations (Hopf) or to multiplicity of HSS
(saddle-node, pitchfork, etc) as their nonlinearities
stem from the local kinetics (unlike hydrodynam-
ics where they usually originate from convective or
advective contributions). Therefore, when diffusive
effects are also included, it is not at all surpris-
ing to observe other bifurcations competing with
the Turing instability, thereby giving rise to a rich
variety of behaviors. Although a huge amount of
theoretical and numerical work, among which many
contributions by Manuel Velarde [Velarde, 1981],
Turing structures were actually first observed late
in 1989 by some of us [Castets et al., 1990]. The
present paper outlines some experimental and the-
oretical development of the research that resulted
from this discovery by making a distinction between
the cases where the system exhibits single or mul-
tiple HSS.
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2. Monostable Systems

The analytical work to determine the bifurcation
diagram near a Turing-type instability (or any
space-symmetry breaking instability) has by now
become a standard procedure. Here, we sketch
the principles of this derivation referring the
reader to typical monographs for technical details
[Manneville, 1990; Cross & Hohenberg, 1993;
Nicolis, 1995]. To analyze the system behavior in
the vicinity of the control parameter threshold, bT ,
one proceeds by expanding the difference of the con-
centration field c(r, t) from its reference state c∗ as
an asymptotic series:

c(r, t)− c∗ = εc1 + ε2c2 + ε3c3 + · · · , (2)

where the small expansion parameter ε is related to
the distance µ from threshold by

µ ∼ b− bT = εb1 + ε2b2 + ε3b3 + · · · (3)

The first order contribution c1 is a linear combina-
tion of the active modes given by suitable eigenfunc-
tions of the Laplacian operator. Now, it is known
from linear stability analysis, that for large aspect
ratio systems, one has to take into account two
kinds of degeneracies in the determination of the
active modes. The rotational degeneracy may be
tackled first, ignoring in this step the effects aris-
ing from the presence of sidebands. At the leading
order of approximation one writes:

c1 = eT

M∑
i=1

[Ai(τ) exp(iqi · r) + cc] , (4)

where eT is the critical eigenvector of the linear evo-
lution operator. The complex amplitudes Ai take
the translational invariance of the infinite system
into account (cc holds for complex conjugate). The
set of M pairs of wavevectors qi, −qi characteriz-
ing the active modes are chosen on the critical circle
(2D) or sphere (3D), |q| = qc in q-space. Because
concentrations are real, the active modes involve
pairs of opposite wavevectors. Each set defines a
possible pattern and the amplitude equations we
have set out to obtain will determine which pattern
is favored by the nonlinear interactions. The ampli-
tudes Ai depend on the natural slow time scale of
the critical modes; this time scale is proportional to
1/µ(τ = µt). The expansions (2)–(4) are inserted in
the nonlinear reaction–diffusion equations. Equat-
ing the successive powers of ε leads to a hierarchy

of linear inhomogeneous equations that are solved
recursively. The solvability conditions of these in-
homogeneous equations (Fredholm alternative the-
orem) then lead to a set of ODEs, the amplitude
equations for the active modes that are of the form

dAi
dt

= µAi +Gi(Aj) , (5)

where Gi(Aj) are nonlinear polynomials in the ac-
tive amplitudes. These equations are universal in
character and the information concerning a par-
ticular system is solely contained in the structure
of the polynomials and their coefficients. The sec-
ond degeneracy is related to the existence of the
sideband modes that also interact nonlinearly with
the critical modes. Indeed, as one moves beyond
bT , a continuous band of modes with wavenumbers
bracketing qc becomes active. Taking into account
the beating of all these modes allows the derivation
of so-called envelope amplitude equations (PDE’s),
that will not be considered here but are necessary
to describe the modulations of the amplitudes over
lengths large compared to q−1

c as well as defects and
spatiotemporal chaos [Newell et al., 1993].

Near bT when the saturation of the instability
occurs at the lowest order and for systems exhibit-
ing a single HSS (monostable situation) the com-
plex amplitude equations, for a 2D system, have the
following general structure:

dAi
dt

=
b− bT
bT

Ai + v
M∑
j

M∑
k

A∗jA
∗
kδ(qi + qj + qk)

−gD|Ai|2Ai −
M∑
j 6=i

gND |Aj |2Ai (6)

for i = 1, . . . , M . This equation mainly supports
solutions such as stripes (M = 1), squares (M = 2)
and patterns of triangular symmetry (M = 3) or
even quasiperiodic structures (M > 3). Because in
chemical systems gND > gD, squares and quasiperi-
odic patterns are never stable. If Ai = Rie

iφi , the
phase φi of the stripes (concentration modulations
along one direction) is free as it solely determines
their position with respect to an arbitrary set of
reference axis. For M = 3, three phase factors
come into play; as two are sufficient to set the po-
sition of the planform, the third one or the sum Φ
of the three phases, must be determined dynami-
cally hence the “resonant” qualifier applied to the
resulting patterns. It turns out that, depending on
the sign of the quadratic coupling v, one has either
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h0 hexagons (v > 0 and Φ = 0) when the max-
ima of concentration form a triangular lattice or hπ
hexagons (v < 0 and Φ = π) when the maxima form
a honeycomb lattice.

In the frame of this nonlinear theory, the
hexagons are the first to appear subcritically.
Increasing the value of the bifurcation parameter
b, the hexagons become unstable with respect to
the stripes, the branch of which has emerged su-
percritically. Reversing the variation of b allows
one to recover the hexagonal structure but by un-
dergoing a hysteresis loop. This is the “univer-
sal” hex-stripes competition scenario that comes
up in many different fields of study [Haken &
Olbrich, 1978; Pismen, 1980; Walgraef et al., 1980;
Walgraef et al., 1982]. In the bistable stripes-
hexagons region, metastability determines which
structure is favored depending on the precise ex-
perimental set-up. When metastability is taken into
account, the hysteresis loop may altogether not be
seen [Borckmans et al., 1992]. Modifications of this
scenario in the vicinity of the primary bifurcation
point bT include the situation where the cubic cou-
pling gD is such that the branch of stripes also ap-
pears subcritically. This can actually occur for the
Lengyel–Epstein model describing the CDIMA re-
action to be discussed shortly. Higher order terms
must then be retained in the amplitude equation.
The structure of the amplitude equations is also
modified if the Turing bifurcation interacts with
other homogeneous bifurcations, a possibility which
was alluded to previously. The result is the appear-
ance of new mixed mode solutions that were studied
in detail for the Turing–Hopf interaction [Kidachi,
1980; De Wit et al., 1993, 1996] and which will be
commented on in relation to the experiments. The
organizing center of the bifurcation calculation is
then the so-called Turing–Hopf (codimension-two)
point where both bifurcations coalesce. The in-
teraction of Turing instabilities with other homo-
geneous bifurcations in relation to bistability of
HSS will be discussed in Sec. 3. In 3D systems,
the following standard sequence may be obtained:
body centered cubic, hexagonal prisms, lamellae
[Walgraef et al., 1980; De Wit et al., 1992, 1997;
Pismen, 1994; Callahan & Knobloch, 1996, 1999].

The experimental studies of chemical patterns
in solution chemistry are carried out in “reactors”
the design of which has considerably progressed
with time. In closed reactors (batch), only transient
spatial organizations can be observed as the sys-
tem eventually relaxes to equilibrium. In order to

(a)

(b)

Fig. 1. Schematic representation of open spatial reactors:
(a) disc shaped two-side-fed reactor (TSFR); CST-1 and
CST-2 are continuous stirred tanks fed with complementary
subsets of reactants. The typical gel-disc thickness is 3 mm.
∆: width of the stratum over which chemical patterns of
characteristic wavelength λ develop. (b) disc shaped one-
side-fed reactor (OSFR); CSTR (continuous stirred tank re-
actor), membrane (mineral disc, pore size 0,02 µm). Gel (2%
agarose), in and out (input and output ports of chemicals),
L (light source), CCD camera (black and white or color).

maintain stable nonhomogeneous states and char-
acterize the bifurcations between them, the system
must be kept at a controlled distance from equilib-
rium, a requirement satisfied by making use of open
spatial reactors. Many geometries of such reactors
have been developed and, in the following, we shall
focus on the most popular designs. The core of these
reactors is very often made of a disc of soft hydro-
gel (polyacrylamide, agarose, polyvinylalcohol) fed
by diffusion from only one [Fig. 1(b)] or the two
[Fig. 1(a)] circular faces with chemicals contained
in stirred tanks (CST) the contents of which are
continuously renewed by pumps. The gel is used to
prevent any fluid motion, so that the only processes
at work within it are reactions and diffusion.

2.1. Two-side-fed reactors (TSFR)

The first experimental observations of Turing pat-
terns [Castets et al., 1990; Ouyang & Swinney, 1991]
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were obtained in two-side-fed reactors (TSFR)
[Fig. 1(a)] operated with the CIMA (chlorite-iodide-
malonic acid) reaction [De Kepper et al., 1982]. In
this and related reactions, iodide (I−) and chlorite
(ClO−2 ) respectively play the role of the main ac-
tivator and inhibitor species [Lengyel & Epstein,
1990; De Kepper et al., 1990]. A basic solution
of chlorite was fed on one side of the gel while an
acidic solution of iodide and malonic acid (MA) was
fed on the other side. In the experiments illus-
trated in this paper, the core of the reactor is made
of agarose gel loaded with polyvinylalcohol (PVA),
a macromolecule that plays two roles: (i) that of
color indicator for the reaction. It forms a reddish-
purple complex in the presence of iodine and iodide
species and it is colorless in the absence of iodide.
(ii) Consequently, this macromolecule of reduced
mobility, by forming a fast reversible complex with
these species, leads to an effective reduced diffu-
sivity of the activator [Lengyel & Epstein, 1992;
Pearson & Bruno, 1992], a necessary condition for
Turing pattern formation. In the TSFR, the feed
mode naturally induces ramps of chemical con-
centrations between the two opposite feed faces.
Patterns only develop in a stratum of thickness ∆
confined between these faces, where threshold con-
ditions are overshot. Observations are made across
the circular faces of the gel and patterns are seen
to spread over the whole view plane. If the pattern
stratum is sufficiently confined (∆ ≤ λ), it is said
that the pattern develops in a monolayer [Dufiet &
Boissonade, 1996]. If this stratum is less confined
(∆ ≥ λ), patterns can develop in two or more layers
[Ouyang et al., 1992; Dulos et al., 1996; Rudovics
et al., 1996].

The phase diagram of Fig. 2, established in
the plane ([I−]0, [MA]0)1 [Rudovics et al., 1996],
shows three main regions. In region I, only the
uniform state is stable (no symmetry breaking pat-
tern). Region II exhibits stationary Turing patterns
(the subregions correspond to various planforms).
Region III gathers different time-dependent struc-
tures. These regions are separated by two lines,
TT’P and HPH’, which respectively correspond to
the Turing and Hopf bifurcation lines. No hystere-
sis was unambiguously observed as a function of the
malonic acid feed concentration, within our experi-
mental accuracy.

Below a critical value of the iodide feed con-
centration, no symmetry breaking pattern and no

Fig. 2. Phase diagram obtained with the CIMA reaction
operated in a two-side-fed reactor (TSFR). Section in the

([MA]0, [I−]0)-plane; MA = malonic acid. For more details
see reference [Rudovics et al., 1996].

time dependent structure are observed, only a uni-
form state (HSS) is detected over the whole range
of malonic acid concentration tested. At this criti-
cal value, the Turing and Hopf lines suddenly curve
and collide at the point P. This is a Turing–Hopf
codimension-2 point around which the two instabil-
ities develop from the uniform stationary state.

Let us now successively review the three regions
beginning by the stationary patterns. As predicted
by theory of two-dimensional systems, the first sta-
ble pattern mode observed (subregion IIa) is an
hexagonal array of spots [Fig. 3(a)]. This region is
followed (subregion IIb), at low [I−]0 by a domain
of stripe (or band) pattern [Fig. 3(b)]. The typical
wavelength of all these patterns is 0.2 mm. Note
that close to point P, the band pattern seems to de-
velop at onset; this would infer that the quadratic
term of the Turing normal form drops to zero in
this region of the phase diagram. At higher io-
dide feed concentration, more unusual planforms
are observed: they are the symmetric triangles
[Fig. 3(c)] of region IIc and the mixed hexagon
and stripe modes (“hexa-bands”) [Fig. 3(d)] of sub-
region IId. In addition, an intricate mixture of
more or less symmetric triangles, hexa-bands and
poorly contrasted stripes is found in subregion IIe.

1[Ci]0 stands for the concentration of species Ci in the feed flux of the tanks, prior to any reaction.
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Fig. 3. Stationary pattern planforms corresponding to different subregions II of Fig. 2. Standard patterns: (a) hexagonal
array of “clear” spots, (b) array of parallel stripes (bands). Nonstandard patterns: (c) array of symmetric triangles, (d) array
of “dark” hexa-bands. All patterns are at the same scale: view size 1.7× 1.7 mm.

Fig. 4. Unfolded sequence of patterns in a bevelled disc two-side-fed reactor (TSFR): The thickness of the disc (diameter
21 mm) increases from left to right, from 1.7 mm to 3.2 mm. Feed conditions as in Fig. 2. View size 10.4 × 3.2 mm.

The transitions between all these new patterns are
relatively smooth: patches of coexistent planforms
are observed close to the pattern transition re-
gions. The actual status of such unusual reaction–
diffusion planforms is still a matter of debate. Even
if it is clear that the third dimension can play
an essential role in the development of these pat-
terns, it is unclear if they are the result of mere

moiré effects due to the superposition of layers of
standard hexagon and stripe planforms [Bestehorn,
1996] or if these unusual planform symmetries cor-
respond to genuine new solutions of quasi-2D sys-
tems. Another example of nonstandard planform is
that of the so-called “black-eye” hexagonal patterns
[Gunaratne et al., 1994; Gomes, 1999]. These could
be explained either by the activation of the over-
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tones of the hexagon modes or as a projection of a
3D body-centered cubic pattern correctly oriented
by the anisotropic effect of the feeding ramps.

The three-dimensional characteristics of pat-
terns are difficult to resolve experimentally. Dif-
ferent indirect approaches have been attempted.
By gradually dyeing the patterns in the thickness,
Ouyang et al. [1992] show that, in a TSFR, the
strong gradient of parameters seems to favor the
stacking of two-dimensional patterns rather than
the genuine three-dimensional structures predicted
for uniform conditions by theory. Other experi-
ments carried on with bevelled disc reactors (where
the circular feed faces make an angle) confirm these
results [Dulos et al., 1996; Rudovics et al., 1996].
The latter experiments show that the distance be-
tween the feed surfaces not only acts on the thick-
ness ∆ of the pattern stratum, so that one or more
layers of patterns can develop, but it also plays the
role of a bifurcation parameter. As the thickness of
the disc increases, a sequence of patterns develops
(Fig. 4) exhibiting a transition from a uniform state
to an hexagonal array of clear spots, then another
transition to parallel stripes.

This corresponds to the standard pattern
sequence predicted by theory of two-dimensional
systems. Beyond the domain of stripes, a new do-

main of clear hexagons follows: this is an exam-
ple of reentrant hexagons which can be accounted
for by different theoretical approaches [Verdasca
et al., 1992; Dewel et al., 1995; Dufiet & Boissonade,
1996]. Then follow domains with the nonstandard
triangles and hexa-bands planforms. This supports
the interpretation that these exotic planforms re-
sult from the superposition of patterns spread in
two layers. Triangles would result from the super-
position of clear hexagons of the first layer with
dark hexagons of the second layer, while hexa-bands
would correspond to the superposition of stripes
and dark hexagons. Indeed, numerical simulations
[Borckmans et al., 1992; Setayeshgar & Cross, 1998,
1999] show that, in the presence of parameter gra-
dients, patterns with different symmetries can de-
velop at different locations along the gradients. It
is however noteworthy that, in experiments, the in-
voked dark hexagon patterns, were never observed
as asymptotic monolayer patterns [Dulos et al.,
1996; Ouyang & Swinney, 1991] which may ques-
tion their origin in “multilayer structures”.

The use of two-side-fed reactors has also al-
lowed for the study of spatiotemporal patterns
found in region III (Fig. 2). At high malonic acid
concentration, the chemical reaction–diffusion sys-
tem exhibits traveling waves [Fig. 5(a)] with very

Fig. 5. Spatiotemporal structures observed in the different subregions III of Fig. 2. (a) Wave pattern (region IIIa),
(b) superposition of a stationary hexagonal array of clear spots and traveling waves (region IIIc), (c) chaotic Turing–Hopf
mixed mode (region IIIb). View sizes (a) 10.6× 17.0 mm; (b) 4.8× 7.3 mm; (c) 2.7× 4.0 mm.
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poorly defined wavelength and quite uniform pe-
riod. The wavelength of these traveling waves are
nearly one order of magnitude greater than that of
the neighboring Turing patterns.

These are phase waves that can spontaneously
break and form spirals rotating with the same pe-
riod as the rest of the wave pattern. This differs
from triggered waves in excitable media where spi-
rals always tend to induce a frequency higher than
that of the spontaneous bulk relaxation oscillations
[Zykov, 1987]. The transition from the station-
ary patterns of region II to the plane wave state
of region IIIa [Fig. 5(a)] can be directly along the
MP portion of the Hopf bifurcation line or indi-
rectly through a series of complex spatiotemporal
behaviors where both wave- and Turing-like pat-
terns are associated. The direct transition is sharp
and, as mentioned above, exhibits no detectable
hysteresis. Involved spatiotemporal dynamics such
as Turing–Hopf mixed-modes (spatial patterns os-
cillating in time), localized structures (a station-
ary spatial structure imbedded into an oscillating
bulk or vice-versa) [Perraud et al., 1993; Heidemann
et al., 1993] as well as more complex or even chaotic
dynamics have been predicted theoretically to ap-
pear close to a codimension-two Turing–Hopf point
[Kidachi, 1980; De Wit et al., 1993, 1996]. It is
defined as the point in parameter space where the
thresholds of both Turing and Hopf instabilities co-
incide. Experimentally, one observes that above the
codimension-two Turing–Hopf point M , two differ-
ent mixed mode states exist: in subregion IIIc, the
mixed mode appears as a stationary hexagon pat-
tern over which waves are superimposed [Fig. 5(b)];
the two modes seem to interact very weakly in this
region of control parameter. In contrast, waves and
Turing-like patterns strongly interact in subregion
IIIb. This new spatiotemporal structure is charac-
terized by a less ordered Turing mode superimposed
by irregular waves and scattered with “smooth state
holes”, the latter dominated by the sole oscillatory
Hopf mode. Figure 5(c) provides a snapshot of such
a spatiotemporal structure which is an example of
a chaotic Turing–Hopf mixed-mode.

In a TSFR, the thickness ∆ of the patterned
stratum cannot be directly controlled. The large
changes in chemical concentrations and in stoichio-
metric ratio of species between the two feed surfaces
make difficult both interpretation of the experimen-
tal results and quantitative modeling since most of
the tractable kinetic models are usually valid over
restrained ranges of concentrations.

2.2. One-side-fed reactors (OSFR)

To avoid some of the above mentioned difficulties,
experiments are now usually performed in one-side-
fed reactors (OSFR) sketched in Fig. 1(b). In these
reactors, the CST-2 of Fig. 1(a) is replaced by an
impermeable transparent wall and all chemicals are
introduced in the same tank that now becomes a
genuine continuously stirred tank reactor (CSTR).
The disc of the gel is pressed against the imper-
meable wall and the opposite face is in contact
with the contents of the CSTR. Often, as presented
here, an inorganic membrane is placed between the
disc and the CSTR in order to rigidly maintain the
disc of gel. Moreover, this membrane may intro-
duce some decoupling between the dynamics of the
CSTR contents and that of the gel, as we shall dis-
cuss later. The disc of the gel is very thin (e.g. a
typical thickness of 0.2 mm). Consequently, it is
often considered that no significant concentration
gradient would develop through the thickness of the
gel. Since this corresponds to a disc thickness of the
order or less than the wavelength of the pattern,
these reactors are often thought of as good approx-
imations of extended two-dimensional systems irre-
spective of chemical feed concentrations. Another
advantage of such reactors is that they also allow
for direct correlations to be made between the dy-
namics of the CSTR and that of the gel.

The dynamics of such a device is described
[Blanchedeau et al., 2000] by the following set of
equations respectively for the CSTR and the gel:

∂cs

∂t
= f(cs) +

(c0 − cs)

τ
+ ρV

D

e

(
∂c

∂z

)
z=0

, (7)

∂c

∂t
= f(c) +D∇2c , (8)

where c0, cs and c are the concentrations of the
species respectively in the input flow, in the CSTR,
and inside the gel, D is the corresponding diffusion
coefficient, τ the residence time of the CSTR, e is
the thickness of the gel, ρV the ratio of the vol-
ume of the gel to the volume of the CSTR, and z
is the normal direction to the CSTR/gel interface.
The f ’s are the reaction rates. On the right-hand
side of Eq. (7), the second term represents the in-
put and output flows of the species. It contains all
the expandable control parameters of the system.
The third term results from the diffusive flux of
the species at the interface between the gel and the
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CSTR and represents the feedback of the gel con-
tents on the CSTR dynamics. When the volume of
the CSTR is large with regard to the volume of the
gel (ρV � 1), this last term can usually be neglected
so that the chemical state of the CSTR is indepen-
dent of the state of the gel and the concentrations
in the CSTR act as a Dirichlet boundary condition
for Eq. (8) at z = 0 (in contact with the CSTR),
whereas a no-flux boundary condition is applied at
z = e (along the impermeable wall).

Whatever the dynamics in the gel, the CSTR
can exhibit any behavior of homogeneous non-
linear dynamical systems such as multistabilities,
oscillations or even chaotic behaviors. In the ex-
periments presented here, we have not considered
the regions of parameters where the CSTR becomes
self-oscillatory in order to avoid the more intri-
cate situation of periodically forced spatiotemporal
systems.

Lengyel et al. [1990a, 1990b] have shown that,
when the CIMA reaction oscillates, most of the ini-
tial chlorite and iodide ions have been consumed
and that the major species are then chlorine diox-
ide, iodine and malonic acid. These are the reagents
of the CDIMA reaction. The following results for
OSFR were obtained by operating this CDIMA re-
action in the CSTR, in regions of parameters where
the reacting solution does not oscillate and can
therefore only be in a monostable stationary state.
For appropriate feed compositions, the standard
sequence, predicted by theory, of two-dimensional
hexagonal and stripe patterns is observed, similarly
to what was observed for monolayers in the TSFR.
Here however, the dimensionality of the pattern is
directly controlled by the designed parameters of
the reactor. The phase diagrams of Fig. 6 were es-
tablished step by step, using the malonic acid con-
centration as the bifurcation parameter [Rudovics
et al., 1999]. From left to right, one can distin-
guish three types of regions: (i) a region of uniform
stationary state, (ii) a region of stationary hexag-
onal and stripe Turing patterns, (iii) a region of
oscillations in the CSTR for which corresponding
dynamics in the gel was disregarded.

Faithful modeling, using the reduced seven
variable kinetic LE-model of the CDIMA reaction
proposed by Lengyel and Epstein [1992] is used
[Rudovics et al., 1999] to determine the CSTR dy-
namics and concentrations. At the same time,
taking advantage that, in the CDIMA reaction,
the initial reactants can be in stoichiometric ex-
cess relative to dynamical variables such as I− and

ClO−2 , a “pool-chemical approximation” for the ini-
tial species can be made for the gel part (i.e. the
concentration of the initial species are maintained
fixed and uniform over space). This is a very
attractive way to reduce the computational model
to account for the reaction–diffusion instabilities in
the gel. Pattern calculations can thus be reduced to
that of a two variable system in a two-dimensional
space. Considering the extreme simplicity of the
model compared to the actual chemical kinetics, the
agreement between computational and experimen-
tal results is very satisfactory both at the level of
the Turing and Hopf limits and at that of the pat-
tern distributions and wavelength dependence as a
function of control parameters.

As seen above, thin one-side-fed reactors can
act as good approximation of extended two-
dimensional systems. From this point of view, the
thinner the gel, the better the two-dimensional ap-
proximation should be. A thickness equal to or less
than the wavelength, as it is the case in the exper-
iments reported here, would seem appropriate but
a new problem then arises. At the feed interface of
the gel, the concentration of all species is actually
maintained constant and uniform by contact with
the CSTR. This defines uniform Dirichlet bound-
ary conditions in the vicinity of which no pattern

Fig. 6. Experimental and computed phase diagrams ob-
tained with the CDIMA reaction operated in a one-side-
fed reactor (OSFR). Section in the ([MA]0, [ClO2]0) plane.
MA = malonic acid; Experimental observations (red): white
square: Stationary uniform states; black triangle: Turing
patterns; white circle: Oscillatory states; thin full line: Limit
of Turing (TEXP) and oscillatory (OEXP) domains (estimated
from these data). Numerical simulations (blue); thick short
dashed lines: Turing bifurcation (T0); thick long dashed lines:
Limit of bistability between uniform and patterned states
(T1); thick full line: Limit of oscillatory domain (OS).
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can form. In thin gels, the influence of the bound-
ary conditions should spread over the whole gel and
hinder all transverse instabilities (i.e. parallel to the
feed surface). How can patterns then develop in ex-
periments performed in a thin OSFR? As a matter
of fact, the contact between the gel and the CSTR
is achieved through a membrane. This membrane,
together with the turbulent fluid boundary layer
which necessarily develops at the contact between
the membrane and the CSTR, effectively reduces
the efficiency of exchanges between the gel and the
bulk of the CSTR. This introduces some partial de-
coupling between the contents of the CSTR and
the gel, and acts as mixed boundary conditions.
The latter conditions have different consequences
for two classes of species: the major reagents and
the intermediate dynamical species. Whereas this
effect is small on the concentrations of the slowly
consumed input species (which are in excess), these
conditions are close to no-flux conditions for the in-
termediate rapidly changing species involved in the
formation of the Turing patterns [Rudovics et al.,
1999]. Thus, the patterns are let free to develop in
the plane parallel to the feed-faces. Notice that, the
2D pool chemical approximation is only valid when
such time scale separation between feed species and
dynamical species is made possible. This type of
situation is only found in chemical systems which
allow for transient batch oscillatory dynamics over
some range of initial concentrations.

3. Bistable Systems

As mentioned in the introduction, reaction–diffu-
sion type systems may exhibit several coexisting
HSS for the same set of parameters and different
diffusive instabilities issued from these HSS may in-
teract. What then becomes of the standard pattern
selection problem? Experiments have revealed that
similar sequences of structures occur in physically
different diffusive systems when they exhibit bista-
bility between HSS [Firth et al., 1992; Ackemann
et al., 1995; Breazeal et al., 1995]. This suggests
that a theoretical analysis of the pattern selection
on a model reaction–diffusion system could cap-
ture the highlights of bifurcation diagrams in gen-
eral bistable reaction–diffusion type systems. As an
illustration, let us consider a two-variable Fitzhugh–
Nagumo (FHN) reaction–diffusion model featur-
ing bistability between HSS and characterized by
the competition between an activator x and an

inhibitor y:

∂x

∂t
= x− x3 − y + βxy +∇2x , (9)

∂y

∂t
= ξ(γx− y − a) + δ∇2y , (10)

where δ = Dy/Dx is the ratio of the diffusion coeffi-
cients and ξ = τx/τy that of the characteristic time
scales of the two fields. These equations were ini-
tially derived as a simple model for the conduction
of the action potential along unmyelinated nerve ax-
ons [Murray, 1993]. The analysis of its dynamics has
however proved useful to autocatalytic chemistry
on numerous occasions since it played a key role
in the systematic design of chemical oscillators
[Boissonade & De Kepper, 1980] or in describing
chemical wave propagation when the medium is
excitable [Tyson & Keener, 1988; Zykov, 1987]
instead of being bistable. We take ξ > 1 to avoid
the presence of Hopf bifurcations as in the experi-
ments mentioned at the beginning of this section.
We distinguish two parameters a and γ that
control the relative position and the number of in-
tersections between the nullclines. β 6= 0 character-
izes the breaking of the (x→ −x, y → −y, a→ −a)
symmetry.

Turing patterns

Let us first consider the symmetric β = 0 case.
When a = ac = 0 and γ = γc = 1, the system
exhibits a critical point (cusp). Around this point,
the model possesses either one or three HSS. When
a is taken as control parameter and γ < 1, bistabil-
ity emerges through two back-to-back saddle-node
bifurcations at a = a±sn, creating a symmetric hys-
teresis loop based on the two HSS (x±, y±) sta-
ble with respect to uniform perturbations. A third
unstable HSS results from the reconnection of the
unstable manifolds arising from the saddle-node
bifurcations. When the spatial processes are taken
into account, diffusive instabilities may appear sym-
metrically on both HSS at a = a±T , respectively
on x+ and x−. This information is summarized in
Fig. 7(a), where, for given ξ and δ, we have rep-
resented the locus of the homogeneous saddle-node
bifurcations (a+γca−) together with that of the dif-
fusive instabilities (X+γTX−) in the (a, γ) param-
eter space. For a given γ = γ0, these loci determine
a = a±sn and a = a±T . For γ < γL, no more Turing in-
stabilities appear on the HSS. Nevertheless, isolated
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Fig. 7. Schematic phase space (a; γ) for the FitzHugh–Nagumo model (for fixed ξ and δ in the absence of Hopf bifurcations).
The locus of the homogeneous saddle-node bifurcations is represented by the curve (a+γca−) originating from the cusp γc.
(a) Symmetric case β = 0. The locus of Turing instabilities is given by (X+γTX−). (b) Asymmetric case β 6= 0. The locus of
Turing instabilities is given by (γLu γTγ

L
l ). The inset enlarges the region near the cusp.

branches of Turing patterns remain possible
[Vastano, 1987; Métens et al., 1997]. The sys-
tem can be analyzed in the vicinity of the critical
point and we thus essentially discuss the situation
of nascent bistability.

Our analysis relies on the fact that the homoge-
neous perturbations around the uniform states are
quasi-neutral. As a consequence, a zero mode is ac-
tivated by the saddle-node bifurcations and must
be taken into account in the dynamics since it will
compete with the spatial active modes and thereby
affect the amplitudes and the stability of the pat-
terns. This zero mode essentially gives rise to new
types of resonant contributions [Dewel et al., 1995].
We therefore approximate the concentration fields
c by a linear superposition of these active modes

c = e1A0 +

[
e2

M∑
i=1

Ai exp(iqi · r) + c.c.

]
, (11)

where (|qi| = qc), e1 and e2 are the eigenvectors of
the Jacobian matrix of the homogeneous and dis-
tributed systems. In 2D, for the case of the resonant
patterns (M = 3 with q1 + q2 + q3 = 0), the reduc-
tion to a center unstable manifold [Roberts, 1985]
leads to coupled amplitude equations [Métens et al.,
1997]:

∂tA0 = h(A0) + α
3∑
i=1

|Ai|2 − β1

3∑
i=1

|Ai|2A0

−β2(A∗1A
∗
2A
∗
3 +A1A2A3) (12)

∂tA1 = µA1 + α[A0A1 +A∗2A
∗
3]− g1|A1|2A1

− g2[|A2|2 + |A3|2]A1 − g3A1A
2
0

− g4A0A
∗
2A
∗
3 (13)

with h(A0) = (γ − 1)A0 − A3
0 and cyclic permu-

tations (c.p) of the subscripts for the equations of
A2 and A3. We consider only the case of a cubic
nonlinearity saturation (β1, β2, g3, g4 are positive).
The growth rate µ of the critical modes is computed
from the linear stability analysis. The amplitude
equations admit the following classes of solutions:
(i) homogeneous solutions given by h(A0) = 0 with
A1 = A2 = A3 = 0 corresponding to the reference
states (HSS); (ii) patterned solutions for which the
amplitudes of both types of modes are different from
zero. They may exhibit either smectic, i.e. stripes,
(A0 6= 0, |A1| 6= 0, |A2| = |A3| = 0 and c.p) or
hexagonal (A0 6= 0, |A1| = |A2| = |A3| 6= 0) sym-
metries. In the smectic case, Eqs. (12) and (13)
admit three solutions for the homogeneous com-
ponent, A0, represented by the inverted S branch
labeled As in Fig. 8(a). In contrast to the case
of the HSS, it is only the intermediate part of the
branch that is stable. The corresponding ampli-
tudes of the inhomogeneous components Rs = |A1|
are given in Fig. 8(b). Solutions of hexagonal sym-
metry (A0 = A, Ai = Rie

iφi , i = 1, 2, 3) are again
determined by the total phase Φ = φ1 + φ2 + φ3

of the resonant modes. According to the sign of
v∗ = g4A − α, the stable stationary value of Φ is
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Fig. 8. Bifurcation diagram in the bistable region for the FHN model with a as parameter. (a) Amplitudes of the homogeneous
components of the stripe (As) and hexagonal (Ahπ, Ah0) patterns. The homogeneous steady states are shown by the thicker
lines. (b) Moduli of the amplitudes of the corresponding modulated components of the same structures (Rs: stripes, R0 and
Rπ: hexagons). Stable states are in full lines. h0 and hπ are, respectively, stable in the ranges [−asc, ah] and [−ah, asc]. The
stripes are stable in the interval [−as, as].

zero (v < 0) or π (v > 0). These values correspond
respectively to a triangular (h0) or a honeycomb
(hπ) lattice. For each value of Φ, we again find
a triplet of solutions as shown in Fig. 8(a) by the
two inverted S labeled Ah0 and Ahπ linking the two
Turing instability points. Again the intermediate
parts are the stable ones. The corresponding inho-
mogeneous components are represented in Fig. 8(b).

The relative stability of the striped and hexag-
onal patterns is also taken into account in Fig. 8.
These bifurcation diagrams are in agreement with
the results of our numerical integration of this FHN
model. On varying parameter a, one observes the
sequence HSS1 ↔ h0(π) ↔ stripes↔ hπ(0) ↔ HSS2.
This succession is typical of bistable systems and is
experimentally observed in a large diversity of sys-
tems [Firth et al., 1992; Ahlers, 1993; Ackemann
et al., 1995; Breazeal et al., 1995].

The principal property that distinguishes the
behavior of bistable systems, with respect to strictly
monostable systems, arises from the effects of the
homogeneous mode that acts globally on the dy-
namics through its resonant coupling with the spa-
tial active modes. It ensures that patterns are
obtained with amplitudes that are of the order of
the difference in amplitudes between (x+, y+) and
(x−, y−). Such large-amplitude patterns cannot be
described by applying the standard weakly nonlin-
ear analysis around a+

T or a−T . The pseudoquadratic

coupling v∗ involving the zero mode induces large
subcriticality of h0 and hπ, respectively to the left
of a−T and to the right of a+

T . The stripes also appear
subcritically. As a result, large domains of coexis-
tence between hexagons, stripes and the HSS can
be observed. In these regions, stable stationary lo-
calized structures like hexagonal domains of h0 or
hπ embedded in the uniform state can be obtained
numerically. Spatial coexistence of structures of dif-
ferent symmetries is also possible; for instance both
types of hexagons may coexist [Dewel et al., 1995].

For the symmetric FHN model discussed above,
the branches of patterned solutions issued from
the two Turing instabilities interconnect. However,
most experimental systems do not exhibit this non-
generic property of symmetry. In the nonsymmetric
case, the critical wave numbers quc and qlc are differ-
ent. This has interesting consequences as we shall
summarize now.

To study this case, one sets β 6= 0 in Eqs. (9)
and (10). An increase of the asymmetry parameter
β induces a distortion of the hysteresis loop in the
(x (or y), a) plane. In the presence of a differential
diffusion process (δ > 1), each of the HSS can be
destabilized by inhomogeneous perturbations. In
general, two Turing instabilities are created, one on
the upper and the other one on the lower HSS. In
the (a, γ)-plane [Fig. 7(b)], when γ is decreased be-
low γT , they migrate, invade the cusp region and
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approach the limit points. For a given value of γ,
the diffusive instability comes closest to the saddle-
node bifurcation whose curvature Ki(i = u, l) is
the largest and the corresponding wavenumber the
smallest. In the FHN model, one has Ku > Kl,
and thus quc < qlc. The Turing bifurcation on the
upper branch of the activator x is also the first to
come in coincidence with the limit point at γ = γLu .
For γ < γLu , the pattern-forming instability only
appears on the lower branch and when γ < γLl , no
more diffusive instability occurs on the HSS. To de-
rive the corresponding amplitude equations the set
of active modes must now contain those arising from
both Turing instabilities as well as the zero mode
related to bistability of the HSS (M and N modes
related to the Turing instabilities, respectively on
the upper and lower HSS).

To avoid being too technical, we refer the reader
to [Bachir et al., 2001], and shall not write down the
corresponding amplitude equations deriving from
the decomposition on the active modes:

c = e1A0 +

[
e2

M∑
i=1

Ai exp(iqi · r)

+ e3

N∑
j=1

Bj exp(iqj · r) + c.c

 . (14)

The results of this analysis is that, first of
all, the model exhibits the standard striped and
hexagonal patterns of wave numbers quc and qlc that
arise, respectively from the Turing instabilities on
the upper and lower HSS. In the asymmetric case,
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Fig. 9. 2D rhombic patterns obtained by numerical integration of the FHN model [Eqs. (9) and (10)] with a = −0.1, β = 0.7,
γ = 0.9, ξ = 2.5 and δ = 120. (a and b) Rhombs corresponding to the cases when the sum of the phases of the modes Φ = 0.
(c and d) Angular amplitude distribution in spatial frequency space for the patterns in (a) and (b), respectively.
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these branches do not reconnect with each other.
Moreover new resonant interactions between active
modes associated with the two Turing instabilities
can occur. The simplest correspond to two fami-
lies (Fig. 9) of rhombic patterns (M = 1, N = 2 or
M = 2, N = 1) corresponding to isoceles triangles
in q-space ql1 + ql2 + qu3 = 0 or qu1 + qu2 + ql3 = 0
and which may have been observed experimentally
[Ouyang et al., 1993]. These resonant patterns
should not be confused with the unstable rhombic
planforms characterized by two critical wavenum-
bers of length qic (i = u or l) and making an an-
gle such that their sum does not correspond to an
active mode. There, contrary to the case of the
isoceles triangles, the phases of the active modes
are arbitrary. The rhombs considered here can co-
exist with the regular hexagons in the vicinity of
the instability points.

Furthermore, when the critical wave numbers
quc and qlc become sufficiently different, superlat-
tice structures can also be generated through the
combination in q-space of various resonant triplets,
either equilateral or isoceles. An example is given
in Fig. 10 corresponding to an equilateral trian-
gle decorated by three isoceles triangles in q-space
(M = 3, N = 6): ql1+ql2+ql3 = 0, ql1+qu1 +qu2 = 0,
ql2 + qu3 + qu4 = 0 and ql3 + qu5 + qu6 = 0. The

Fig. 10. Superlattice Turing pattern obtained from a nu-
merical integration of the FHN model [Eqs. (9) and (10)] for
β = 0.7, γ = 0.9, ξ = 2.5 and δ = 120.

resulting pattern is composed of two discrete but
interacting sublattices and thus presents a spatial
order on two different length scales. Such dynamic
superlattices have also been obtained in nonlinear
optical devices [Pampaloni et al., 1997; Musslimani
& Pismen, 2000] and in two-frequencies Faraday ex-
periments [Kudrolli et al., 1998; Arbell & Fineberg,
1998]. Finally, for specific relations between the an-
gles of the triads of wave vectors of active modes,
quasiperiodic patterns may also be generated. All
these new structures thus appear as self-induced res-
onances resulting from the interaction between two
different symmetry-breaking instabilities. The spa-
tial modes associated to one of the diffusive insta-
bilities play the role of a forcing on the other (and
vice-versa).

As a final remark, we must point out that the
mechanisms presented in the preceding paragraphs
are still operative in the purely monostable region
close to the cusp point.

Front patterns

But this is not the whole story about pattern for-
mation in bistable HSS systems. Indeed, precisely
because two different HSS are both stable for the
same set of parameters, another important class of
solutions can be constructed. It consists in a front
linking the two HSS, thereby separating the system
into two adjoining spatial regions: one where HSS1

exists, the other containing HSS2. Such fronts, the
detailed properties of which depend on the charac-
teristics of the reaction–diffusion system at hand,
have been well studied in the past (e.g. [Ortoleva
& Ross, 1975; Pismen, 1979]). Under differential
diffusion conditions, similar to those met for the
Turing pattern formation, such fronts may undergo
a class of morphological instabilities that were first
described by Kuramoto [1984]. It was further ex-
tensively studied in relation to pattern formation
by Hagberg and Meron [1994a, 1994b] and shown to
be able to lead to the development of labyrinthine-
type patterns as in Fig. 11. These instabilities
should not be confused with the front instabilities
that are for instance involved in the nucleation of
Turing structures in monostable systems, such as
the CDIMA system [Davies et al., 1998]. There,
the front behind which the structure emerges,
invades the unstable HSS after quenching the
system beyond bT and bistability of HSS is not
involved. The thresholds of Turing and front insta-
bilities differ from one another and may eventually
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Fig. 11. Development of a labyrinthine pattern in the FHN model [Eqs. (9) and (10)] through a morphological instability of
a front connecting the two HSS (black and white).

compete. Therefore, the pattern that results
depends on the basin of attraction to which the ini-
tial conditions belong. This competition between
labyrinthine and Turing structures is still a mat-
ter of research. Recently, it has been shown on a
particular dynamical system, a variant of the Swift–
Hohenberg model [Cross & Hohenberg, 1993], that
a bifurcation is involved in this transition [Di Menza
et al., 2001]. In this intricate domain, a lot of inves-
tigations are still needed both from the theoretical
and experimental view points. Labyrinthine pat-
terns have been observed [Lee et al., 1993; Lee &
Swinney, 1995; Li et al., 1996] in an OSFR op-
erated with the ferrocyanide-iodate-sulphite (FIS)
reaction [Edblom et al., 1986]. Numerical integra-
tions of a reaction–diffusion model based on a pos-
sible skeleton kinetic mechanism of this reaction
lead to numerous patterned behaviors that were
observed, which include the labyrintine structures
[Lee & Swinney, 1995]. These numerical results
were built on the now called CFUR approximation
[Vastano et al., 1987, 1988]. In this approximation,
the gel part of the OSFR is assimilated to a two-
dimensional reaction–diffusion system where each
point is directly fed by fresh reactants, and releases
all the species involved in the kinetic mechanism.
The system is thus described as a 2D-continuum

of CSTRs coupled by diffusion and its dynamics is
described by

∂c(r, t)

∂t
= f(c, b) +

(co − c)

τ
+D∇2c(r, t) (15)

Under such formulation, the two first terms of
Eq. (15) may give rise to bistability of HSS. Thus,
in the CFUR approximation, Turing and front in-
stabilities and their resulting patterns may be gen-
erated as discussed previously in this section using
for instance the FHN model. However, here lies
a snag because autocatalytic reactions in solution
chemistry generally exhibit bistability of HSS only
under CSTR-type feed conditions and the gel part
of the OSFR is not fed in such a way. Indeed, the
kinetic part of Eq. (8) does not give rise to bistabil-
ity of HSS on its own. The CSTR bistability finds
its origin in presence of the second (feeding) term
of Eq. (7) or (15). A term that is not operating in
the gel part. What more likely occurs in an OSFR
is discussed in the next part.

4. Spatial Bistability

In view of the discussion at the end of the pre-
vious paragraph, let us briefly recall the bases of
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bistability in a CSTR. If the input flow rate is large
— that is if the residence time is much shorter
than the typical reaction time — the extent of re-
action is small and, in the stationary regime, the
concentrations are close to the composition in the
input flow (“flow state” F). If the residence time
is much longer than the reaction time, the com-
position inside the reactor is close to that of the
thermodynamic equilibrium that one would obtain
in a closed reactor with the same initial concen-
trations (“thermodynamic state” T). In standard
reactions, the branches of flow and thermodynamic
states are smoothly connected at intermediate flow
rates, but when autocatalytic or similar nonlinear
kinetic processes are present, the two states can
both exist for a same set of flow rates defining two
distinct branches F and T. Many examples of this
well known “temporal bistability” can be found in
reference books [Field & Burger, 1985; Epstein &
Pojman, 1998]. Most reactions which are bistable
in a CSTR exhibit “clock dynamics” in batch, that
is a sudden single switch to a state close to equilib-
rium after a well defined induction period, char-
acterized by a low conversion rate. The switch
occurs when the concentration of some species in-
volved in the positive feedback loop process reaches
a critical level. Thereafter, the conversion rate con-
siderably speeds up. In these reactions, after the
dynamical switch, at least one of the major ini-
tial reactants is nearly totally consumed. Conse-
quently, when modeling these reaction systems, the
feed terms cannot be eliminated even at the low-
est level of approximation. In these conditions, no
“pool chemical” approximation is possible for all in-
put species at the same time. Therefore, whereas
the study of a clock reaction in the CFUR approxi-
mation can be mapped onto the FHN model consid-
ered before, this cannot be done for the gel part of
an OSFR.

A detailed analysis of pattern development in
a bistable system was developed in the framework
of the chlorine dioxide–iodide (CDI) reaction. This
reaction belongs to the family of the CIMA and
CDIMA reactions that lead to Turing patterns, as
seen above. It is a “minimal” nonlinear chemical
system [Epstein & Orbán, 1985; De Kepper et al.,
1990] for which a very comprehensive kinetic mecha-
nism has been proposed [Lengyel et al., 1996] which
quantitatively accounts for the batch and CSTR
dynamical behaviors of the reaction. This proto-
typic bistable reaction system is less complex and
has a much better established kinetic mechanism

than that of the bistable FIS reaction which has
led to the observation of labyrinthine and other in-
teracting front patterns [Lee et al., 1993; Li et al.,
1996] in a disc OSFR slightly more intricate than
the one described in Fig. 1(b).

4.1. Propagating fronts in a disc
shaped OSFR

In batch conditions, the chlorine dioxide–iodide
(CDI) reaction exhibits a typical “clock” behavior.
When operated in a CSTR, this reaction can exhibit
both sustained oscillations and bistability. As for
the previous iodide-driven reactions of the family,
polyvinyl alcohol (PVA) may be used as an iodine–
iodide color indicator. As a matter of fact, because
the iodine–iodide–PVA colored complex is inert in
the reaction process, PVA is not only a color indi-
cator but it can also control the effective reactivity
of iodide, the activatory species. In the following
experiments, this effect was used to expand the do-
main of bistability at the expense of the region of
oscillations [Blanchedeau et al., 2000].

The following results were obtained when op-
erating the CDI reaction in a disc OSFR, of the
type sketched in Fig. 1(b), fed with chemicals in
3% weight PVA solutions. The CSTR dynamics can
exhibit bistability between two HSS over the range
of [I−]0 values between 1.25 and 2.25×10−3 M. The
HSS reached high values of [I−]0 and the colored
reddish purple corresponds to the F state while the
other HSS, reached a low [I−]0 and colored pale yel-
low corresponds to the T state.

In the OSFR, with the CSTR part in the T
state, the disc of gel is uniformly pale yellow, thus
the gel also belongs to the T state branch. At high
iodide concentration, the CSTR is in the F state
and the gel is uniformly reddish purple. The gel
remains in the F state as [I−]0 is decreased until
it reaches a critical value close to the low limit of
the bistability domain. Just beyond this [I−]0 crit-
ical value, another less colored state appears in the
gel. This new state starts invading the disc from
the rim while the CSTR remains in the F state. If
[I−]0 is further decreased, the new state in the disc
disappears while the contents of the CSTR under-
goes the transition to the pale yellow T state. If,
on the contrary [I−]0 is increased, the new state is
maintained in the gel up to another critical value
where the gel switches back to the darker F state.
Thus, bistability of steady states is observed for the
gel for 1.26 × 10−3 M ≤ [I−]0 ≤ 2.00 × 10−3 M.
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When a front is created between these two
steady states, the rate and the direction of prop-
agation as well as the morphology of this front sen-
sitively depend on [I−]0. For [I−]0 = 1.8 × 10−3 M,
the “clearer state” invades the F state [Figs. 12(a)–
12(c)] and the propagation rate increases as [I−]0
is decreased (see Table 1). While for [I−]0 = 1.8 ×
10−3 M the propagating front is smooth (Fig. 12), at
lower values of [I−]0, the front loses its smoothness.
Ondulations develop with increasing amplitude and
decreasing average wavelength, as [I−]0 is lowered
(Table 1) (Fig. 13). This is the result of a transver-

sal morphological instability [Kuramoto 1984; Scott
& Showalter 1992; Horváth et al., 1993; Horváth &
Showalter, 1995; Toth et al., 1996]. For [I−]0 higher
than 1.8 10−3 M, say 1.9×10−3 M as in Figs. 12(d)–
12(f), the direction of propagation of the front is
reversed, the darker state invades the clearer one.
Note that, consequently to such a [I−]0 increase,
made just after the snapshot of Fig. 12(c), the front
slows down, stops and reverses. However, this re-
versal in the propagation direction does not occur
simultaneously for all parts of the front around the
dark state dropplet. The flatter parts of the front

Fig. 12. Time sequence of a front propagation observed in a disc shaped one-side-fed reactor operated with the bistable
CDI reaction: Initial state: reactor fed with [I−]0 = 2 × 10−3 M. Front observed 30 min after a jump in [I−]0 feeding from
2 × 10−3 M to 1.8 × 10−3 M; (a–c) front propagation sequence, time interval between two successive snapshots ' 30 min,
(d) front shape 4h after changing [I−]0 from 1.8×10−3 M to 1.9×10−3 M just after snapshot c; (c–e) front propagation sequence
in the inverse direction, time interval between two successive snapshots ' 120 min. Fixed parameters: [ClO2]0 = 3.84×10−4 M,
residence time of the CSTR 8 min, temperature 250C.



2324 P. Borckmans et al.

Table 1. Front rate and characteristic wavelength of
indentations.

[I−]0 (mM) Front velocity (mm/h) Average λ (mm)

1.8 2.1 smooth

1.7 3.6 1.0

1.6 5.3 0.71

1.5 9.6 0.43

Fig. 13. Transversal front instability in the CDI reaction op-
erated in a disc shaped one-side-fed reactor (OSFR). Initial
conditions as in Fig. 12. Front observed after a finite concen-
tration jump in [I−]0 from 2× 10−3 M to 1.5× 10−3 M.

reserve first and, as a result, the droplet takes a cir-
cular shape [Fig. 12(d)]. This infers that the direc-
tion of front propagation may depend on curvature
and that, in this new direction [Figs. 12(d)–12(f)],
the rate increases with decreasing curvature.

In the above described experiments, two differ-
ent states can coexist in the gel for the same bound-
ary conditions at the gel/CSTR interface over times
longer than the diffusion time of species through the
gel. One would like to understand how the continu-
ity of these two states is ensured in the thickness of
the disc of gel. In other words, how are the concen-
tration changes organized in the depth of the gel?
Observations in the disc shaped OSFR do not allow
for the determination of such concentration profiles.
The only directly available information is the total
light absorption integrated across the thickness of
the disc.

4.2. Propagating fronts in a ring
shaped OSFR

Ring shaped OSFRs, as sketched in Fig. 14, were
designed in order to directly acquire information
on the concentration profiles in a direction cor-
responding to the thickness of the disc of gel
[Blanchedeau et al., 2000]. This OSFR is made of

Fig. 14. Schematic representation of an annular strip OSFR.
Outer diameter of the gel annulus = 15 mm; e is the distance
between the outer and inner diameters of the annulus. Three
different annulus were used with e = 0.5, 1.0 and 2.0 mm.

a flat ring of agarose gel fed from its external
edge in contact with the contents of a CSTR. The
other sides are pressed against impermeable walls.
The width e of the ring is equivalent to the thick-
ness of the previous disc of gel. Observations are
made from above, perpendicularly to the feed di-
rection. As before, the reactor is fed with solutions
of chemicals of the CDI reaction and the agarose
gel is loaded with PVA. The reacting solution in the
CSTR exhibits bistability as a function of the iodide
concentration. The two branches of the bistable re-
spectively correspond to the T and F states and
their limits are respectively called LT and LF .

Taking into account the state of the CSTR,
three different states of the whole system can be
distinguished, as a function of feed concentrations.
If the CSTR contents corresponds to the T branch,
the gel is uniformly pale yellow: this defines, as
in the previous section, the T state of the gel. If
the CSTR contents belongs to the flow branch, the
gel can either be in a uniform reddish-purple color
(defining the F state of the gel) or exhibit a sharp
color switch from reddish-purple, on the CSTR side,
to pale yellow, deeper in the ring of gel. In the fol-
lowing, this mixed state of the gel will be referred as
the FT state. The latter two cases are illustrated
in Figs. 15(a) and 15(b). The two different gray
scale profiles correspond respectively to the dark
and clearer states in the disc OSFR.

The domains of stability of these states and the
transitions between them were determined by de-
creasing or increasing [I−]0. They are reported in
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Fig. 15. Spatial bistability in the annular strip OSFR. (a) F state; (b) FT state; (c and d) interface between the F and FT
states. The arc-lines are the limits of the gel. The lower arcs delineate the CSTR/gel interface, the upper arcs delineate the
impermeable wall. Distance between the two arc-lines, e = 1 mm; values of [I−]0 = 1.24×10−3 M in (a–c); [I−]0 = 1.25×10−3 M
in (d).

Fig. 16(B) for different values of e. At high and
low [I−]0, the F and T states are respectively the
only possible stable states. As expected, in the in-
termediate range of [I−]0, the domain of stability of
the three states can overlap and give rise to bista-
bility or tristability. The extent of these overlaps
sensitively depends on e. The F state loses stability
before the critical LF value is reached. While for
e=0.5 mm, the two transition values cannot be dis-
tinguished, the differences between them increase
with the gel thickness. At low [I−]0, the FT state
gives place to a T state as the contents of the CSTR
switches to the thermodynamic branch. Within our
experimental accuracy, this limit does not signifi-
cantly depend on e. At high [I−]0, the FT state
ends with a transition to state F. This transition is
gradually shifted to higher [I−]0 when e increases.
Limiting ourselves to the case where the CSTR re-
mains on the F branch, the region of overlapping F
and FT states determines what we call the region of
spatial bistability [Blanchedeau et al., 2000]. The
extent of the spatial bistability decreases when e
increases from 0.5 to 2 mm.

Model calculations based on the detailed
scheme proposed by Lengyel et al. [1996] and taking

into account the actual experimental setting (i.e. gel
of thickness e diffusively connected to a CSTR)
were performed [Blanchedeau et al., 2000]. The
computed phase diagram presented in Fig. 16(B)
is in quasi-quantitative agreement with the experi-
mental results [Fig. 16(A)]. In particular, the right
domain of spatial bistability is obtained. At e =
2.0 mm, the domain of spatial bistability is vanish-
ingly small. However, this domain extends slightly
beyond LT , contrary to experimental observations.
Calculations also predict that spatial bistability
should disappear when e < einf . It is even shown
that below a critical value, e < einf = 0.039 mm, no
mixed state can be observed, whatever the value of
[I−]0. Such small e values could not be reached in
experiments for technical reasons.

In experiments, in the domain of parameters
where both F and FT are stable, it is possible
to produce an interface between these two states
[Figs. 15(c) and 15(d)] and to study their relative
stability as a function of the control parameter. The
interface between the two states can be made to
move in one or the other direction by finely adjust-
ing the [I−]0 value. Note that the characteristics
(i.e. the relative extensions of the F and T parts)
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BA

Fig. 16. Phase diagrams and spatial bistability in the plane (e, [I−]0). Full lines are the lower and upper [I−]0 limits of the
FT state. Dotted lines are the minimum [I−]0 values for which the F state is stable. Spatial bistability lays in between this
latter limit and the upper FT state limit. (A) Experimental results: the symbols correspond to the experimental points at
e = 0.5, 1.0 and 2.0 mm (up triangles: F state; down triangles: T state; bullets: FT state). (B) Numerical results: residence
time of the CSTR 103 s.

of the mixed state and correlatively those of the in-
terface between this state and the F state of the gel
can sensitively depend on control parameter values.
Thus, as illustrated in Figs. 15(c) and 15(d) the
change in the propagation direction of the F/FT
interface comes with a change in the aspect ratio
of this interface in the thickness, a phenomenon
also found in model calculations [Blanchedeau &
Boissonade, 1998]. These observations clearly show
that even in thin disc OSFR, the now most popular
spatial reactor design, the third dimension can sel-
dom be discarded to account for the dynamics and
the pattern mode selection mechanisms.

5. Conclusions

We have focused the present review on Turing struc-
tures formation in connection with the various types
of reactors used in experiments. Emphasis was put
on the differences that result from the use of chemi-
cal reaction systems which either exhibit bistability
of HSS or solely a single HSS in a CSTR. The litera-

ture on periodic pattern formation through diffusive
instabilities is so vast that covering all aspects is be-
yond the scope of this brief review. In the context
of Turing pattern formation in chemical reaction–
diffusion systems, we may refer the reader to other
reviews focused on the monostable case, the Turing–
Hopf interaction and localized patterns in TSFRs
[Boissonade et al., 1995; Ouyang & Swinney, 1995;
Borckmans et al., 1995; De Wit, 1999] and in batch
reactors [Lengyel & Epstein, 1995].

As a conclusion, we wish to draw the reader’s
attention on a few other works related to Turing
structures and to other regular pattern formation
mechanisms that have recently been brought to
light.

Despite the successes garnered since the first
experimental demonstration of Turing patterns, it
is fair to admit that very few chemical systems have
led to Turing patterns or their likes. Therefore, the
field is always on the lookout for promising new re-
actions [Orbán et al., 2001] or media that would fa-
vor periodic pattern formation. Recently, the latter
type of approach was remarkably and successfully
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exemplified by operating the well known Belousov–
Zhabotinsky reaction in a water-in-oil microemul-
sion [Vanag & Epstein, 2001]. In these conditions, a
wealth of standing and traveling patterns that were
undocumented in this reaction could be produced.
In this quest, one must still beware of convection
that is always lurking as stressed by the ongoing
debate around the patterns observed in the methy-
lene blue-sulfide-oxygen system [Watzl & Münster,
1995; Kurin-Csörgei et al., 1998, 1999; Münster,
1999; Orbán et al., 1999]. In this and other cases,
further effects may have to include the coming
into play of the mechanical changes that occur in
the material supporting the reaction (e.g. the gel
matrix) [Steinbock et al., 1998].

In other respects, the sensitivity to light of
chemical reactions can be used to control the spatial
structures and apprehend some of their properties
through spatially uniform illumination, constant or
periodic in time [Horvath et al., 1999; Dolnik et al.,
2001a, 2001b; Sanz-Anchelergues et al., 2001].

Spatial symmetry breaking can also occur
through other mechanisms. Symmetry breaking
takes place through the strong resonant forcing of
spatially distributed oscillators as was theoretically
proposed by Coullet and Emilsson [1992a, 1992b]
and finally experimentally observed and studied
[Petrov et al., 1997; Lin et al., 2000]. Nonlocal
feedbacks imposing long-range inhibition may read-
ily give rise to pattern formation [Hildebrand et al.,
2001; Mikhäılov, 1994; Middya et al., 1993] when
competing with some short-range activation pro-
cess. Systematic studies of the spatial unfolding of
elementary bifurcations have recently been set out
by Coullet et al. [2000]. These aim at answering
questions such as: are the homogeneous bifurca-
tions anticipated by another bifurcation when spa-
tiotemporal perturbations are introduced and what
is the nature of the eventually created patterns?
They consider all generic codimension one bifurca-
tions in dimension smaller or equal to 2 that include,
on the one hand, saddle-node and Hopf bifurcations
of fixed points, and saddle-node of cycles and homo-
clinic bifurcations for periodic orbits on the other
hand.

Besides the labyrinthine patterns, discussed
previously, the FIS reaction also generated station-
ary or oscillating Turing structures through a tran-
sient spot self-replication mechanism starting from
a localized trigger [Lee et al., 1994]. A similar dy-
namics was also observed with the CDIMA reaction
[De Kepper et al., 1994; Davies et al., 1998]. A

prototypical model is that of the irreversible “auto-
catalator” [Gray & Scott, 1990] which, in a CFUR
description, exhibits a large variety of behaviors
[Pearson, 1993]. As revealed by extensive numer-
ical work, these behaviors include self-replicating
spots that generate various asymptotic states in
2D, as well as pulses that self-replicate in 1D. For
this model, self-replication is observed in the vicin-
ity of a Takens–Bogdanov point when diffusion of
species is introduced. This complex problem has
recently received a fair amount of attention. Al-
though precise mathematical elements of response
about the origin of the phenomenon are becoming
known in 1D, it is not yet clear whether, in 2D,
symmetry breaking of the spots in the azimuthal
direction is also involved. In order not to overload
the reference list, we refer the reader to an overview
paper by Nishiura and Ueyama [1999]. In a way,
these theoretical works are in line with the concept
of spatial unfolding of bifurcations considered by
Coullet et al. [2000]. Here however, the bifurcation
in the absence of spatial effects is of codimension
two! The generality of the Nishiura and Ueyama
explanation remains to be assessed as spot replica-
tion was also observed numerically for the Brusse-
lator model where a Takens–Bogdanov point is not
present [Tlidi et al.].

One point worth coming back to is the state-
ment that hydrodynamical flows are systematic hin-
drances to regular pattern formation! Quite to
the contrary, in tubular plug flows, the differential
flow induced chemical instability (DIFICI) [Rovin-
sky & Menzinger, 1992] and the flow distributed os-
cillators (FDO) patterning mechanisms [Kuznetsov
et al., 1997; Andresén et al., 1999, 2000], first pro-
posed theoretically, were subsequenly supported by
experimental observations [Rovinsky & Menzinger,
1993; Kaern & Menzinger, 1999]. Whereas DIFICI
gives rise to periodic traveling waves, FDO may
lead to periodic stationary patterns, even when the
diffusion coefficients of the activator and inhibitor
are equal. The FDO model seems to appeal to bi-
ologists as it is able to produce various repeated
or periodic patterns in cellularized growing tissues
[Kaern et al., 2000a, 2000b; Jaeger & Goodwin,
2001].

Having transited to the realm of biology, we
have, in some sense, gone a full circle as Turing’s
ideas were introduced to try to account for some
aspects of morphology in biology. This domain,
fertilized by the recent discoveries of genetics, is
of an even wider scope, too wide to even be set
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ajar. Although the diffusing morphogen species re-
mained elusive for a long time, things seem to be
changing as discussed in the papers presented by
Harland [2001] and Vincent and Perrimon [2001].
The use of reaction–diffusion type systems, im-
plementing mechano-chemical properties of cells is
for instance discussed in the works by Meinhardt
[Meinhardt, 1994; Koch & Meinhardt, 1994] and
Murray [1993]. Reaction-transport equations are
now even finding a place in the description of the
heterogeneous nature (microtubules and molecular
motors) of cells as shown in the work of Lee and
Kardar [2001] and the references there cited. To
quote Murray: “Although genes play a crucial role
in the control of pattern formation, genetics says
nothing about the actual mechanism involved nor
how the vast range of pattern and form that we
see evolves from an homogeneous mass of dividing
cells”. We are modestly hoping that the work dis-
cussed in this review can contribute to the under-
standing of such great schemes.
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Poincaré), pp. 255–259.

Dolnik, M., Berenstein, I., Zhabotinsky, A. M. &
Epstein, I. R. [2001a] “Spatial periodic forcing of
Turing structures,” Phys. Rev. Lett. 87, 238301.

Dolnik, M., Zhabotinsky, A. M. & Epstein, I. R. [2001b]
“Resonant suppression of Turing patterns by periodic
illumination,” Phys. Rev. E63, 026101 (1–10).

Dufiet, V. & Boissonade, J. [1992] “Numerical stud-
ies of Turing pattern selection in a two-dimensional
system,” Physica A188, 158–171.

Dufiet, V. & Boissonade, J. [1996] “Dynamics of Turing

pattern monolayers close to onset,” Phys. Rev. E53,
4883–4892.

Dulos, E., Davies, P., Rudovics, B. & De Kepper, P.
[1996] “From quasi-2D to 3D Turing patterns in
ramped systems,” Physica D98, 53–66.

Edblom, E. C., Orbán, M. & Epstein, I. R. [1986] “A
new iodate oscillator: The Landolt reaction with fer-
rocyanide in a CSTR,” J. Am. Chem. Soc. 108,
2826–2830.

Emelyanov, V. I. [1992] “Generation, diffusion, deforma-
tional instabilities and formation of order defect struc-
tures on the surface of solids under the effect of strong
laser beams,” Laser Phys. 2, 389–466.

Epstein, I. R. & Orbán, M. [1985] “Halogen-based os-
cillators in a flow reactor,” in Oscillating and Travel-
ing Waves in Chemical Systems, eds. Field, R. J. &
Burger, M. (Wiley, NY), pp. 257–286.

Epstein, I. R. & Pojman, J. A. [1998] An Introduction
to Nonlinear Chemical Dynamics (Oxford University
Press).

Falta, J., Imbihl, R. & Henzler, M. [1990] “Spatial pat-
tern formation in a catalytic surface reaction: The
facetting of Pt(110) in CO+O2,” Phys. Rev. Lett. 64,
1409–1412.

Field, R. J. & Burger, M. (eds.) [1985] Oscillating and
Traveling Waves in Chemical Systems (Wiley, NY).

Firth, W. J., Scroggie, A. J. & McDonald, G. S. [1992]
“Hexagonal patterns in optical bistability,” Phys. Rev.
A46, R3609–R3612.

Glansdorff, P. & Prigogine, I. [1971] Thermody-
namic Theory of Structure, Stability and Fluctuations
(Wiley, NY).

Gomes, M. G. M. [1999] “Black-eye patterns: A rep-
resentation of three-dimensional symmetries in thin
domains,” Phys. Rev. E60, 3741–3747.

Gray, P. & Scott, S. K. [1990] Chemical Oscillations and
Instabilities (Oxford, Clarendon Press).

Gunaratne, G. H., Ouyang, Q. & Swinney, H. L. [1994]
“Pattern formation in the presence of symmetries,”
Phys. Rev. E50, 2802–2820.

Hagberg, A. & Meron, E. [1994a] “Pattern formation in
nongradient reaction–diffusion systems: The effects of
front bifurcations,” Nonlinearity 7, 805–835.

Hagberg, A. & Meron, E. [1994b] “Complex patterns
in reaction–diffusion systems: A tale of two front
instabilities,” Chaos 4, 477–484.

Haken, H. & Olbrich, H. [1978] “Analytical treatment
of pattern formation in Gierer-Meinhardt model of
morphogenesis,” J. Math. Biol. 6, 317–331.

Harland, R. M. [2001] “A twist on embryonic signaling,”
Nature 410, 423–424.

Heidemann, G., Bode, M. & Pürwins, H.-G. [1993]
“Fronts between Hopf- and Turing-type domains in
a two-component reaction–diffusion system,” Phys.
Lett. A177, 225–230.

Hildebrand, M., Skodt, H. & Showalter, K. [2001]



2330 P. Borckmans et al.

“Spatial symmetry breaking in the Belousov–
Zhabotinsky reaction with light-induced remote com-
munication,” Phys. Rev. Lett. 87, 088303.

Horvath, A. K., Dolnik, M., Munuzuri, A. P., Zhabotin-
sky, A. M. & Epstein, I. R. [1999] “Control of Turing
structures by periodic illumination,” Phys. Rev. Lett.
83, 2950–2953.
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